钢弹簧浮置板轨道垂向动态特性及对轮轨力的影响研究

周圣禄,李伟,周志军,温泽峰,钟文生

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 67-76.

PDF(3082 KB)
PDF(3082 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 67-76.
论文

钢弹簧浮置板轨道垂向动态特性及对轮轨力的影响研究

  • 周圣禄,李伟,周志军,温泽峰,钟文生
作者信息 +

Vertical dynamic characteristics of steel spring floating-slab track and its effects on wheel-rail contact forces

  • ZHOU Shenglu,LI Wei,ZHOU Zhijun,WEN Zefeng,ZHONG Wensheng
Author information +
文章历史 +

摘要

钢弹簧浮置板作为一种高等减振轨道广泛铺设于我国地铁线路中,在服役过程中,该轨道在部分线路中出现的钢轨波磨问题,轮轨动态行为对其产生有较大影响。为研究该轨道垂向动态特性及其对轮轨瞬态力的影响,建立钢弹簧浮置板轨道的三维轮轨瞬态滚动接触有限元模型,分析在有、无车辆加载下轨道垂向位移导纳特性,模拟钢轨宽频不平顺激扰下轮轨垂向瞬态接触力的响应。结果表明:(1)无车辆加载作用下,钢弹簧浮置板轨道在100 Hz以下(22 Hz、43 Hz、68 Hz等)振动模态表现为钢轨和浮置板共同垂向弯曲,在100 ~ 1400 Hz中高频段表现为钢轨相对浮置板弯曲。(2)车辆加载后,轨道导纳出现59 Hz的P2共振,及64 Hz和72 Hz的轨道整体弯曲振动峰值。(3)柔性轮轨耦合后轨道导纳受到轮对作用影响在364 Hz、489 Hz、623 Hz处出现新峰值。其中,364 Hz、489 Hz为车轮振动模态引起,623 Hz为双轮对干涉引起的钢轨弯曲模态。(4)车辆瞬态通过含60 ~ 220 mm波长钢轨不平顺的轨道时,轮轨瞬态垂向接触力在约70 Hz响应最显著,这是由轨道的整体弯曲振动模态被激发引起,该振动是钢弹簧浮置板轨道出现160 ~ 200 mm波长波磨的原因。

Abstract

Steel spring floating slab (SSFS) is extensively utilized as a high vibration damping track in metro lines. The wheel-rail dynamic behavior has a major impact on the rail corrugation occurred on the some SSFS track. A three-dimensional finite element (FE) model of wheel–rail transient rolling contact on the SSFS track was established to investigate the vertical dynamic characteristics of the track and their effects on the wheel-rail transient contact forces. The vertical receptance of the track was analyzed with and without vehicle loading. The wheel-rail vertical transient contact force under wide-frequency excitation of the rail irregularity was simulated in the FE model. The simulation results show that (1) Without vehicle loading, the vibration modes of the SSFS track below 100 Hz (including 22 Hz, 43 Hz, 68 Hz, etc.) are the vertical bending of the rail and the floating slab together. The vibration modes of the track in the frequency range from 100 to 1400 Hz represent the bending of the rail relative to the floating slab. (2) After vehicle loading, the P2 resonance occurs at 59 Hz. The vertical receptance of the track shows the peaks at 64 Hz and 72 Hz, which represent the bending of the entire track. (3) New peaks of the rail receptance occur at frequencies 364, 489, and 623 Hz after considering flexible wheel-rail coupling. The peaks at 364 and 489 Hz represent the joint vibration of wheelset and track slab and the peak at 623 Hz represents the rail bending due to the interference of dual wheelsets in the track. (4) When the vehicle passes through rail irregularities with a wavelength of 60 ~ 220 mm, the vertical transient contact force attributed to the bending mode of the entire track reaches its maximum at about 70 Hz, which is the reason for the corrugation with a wavelength of 160 ~ 200 mm on the SSFS track.

关键词

地铁 / 钢弹簧浮置板 / 轮轨瞬态滚动接触 / 位移导纳 / 有限元法

Key words

metro / steel spring floating slab / transient wheel-rail rolling contact / receptance / finite element method

引用本文

导出引用
周圣禄,李伟,周志军,温泽峰,钟文生. 钢弹簧浮置板轨道垂向动态特性及对轮轨力的影响研究[J]. 振动与冲击, 2024, 43(16): 67-76
ZHOU Shenglu,LI Wei,ZHOU Zhijun,WEN Zefeng,ZHONG Wensheng. Vertical dynamic characteristics of steel spring floating-slab track and its effects on wheel-rail contact forces[J]. Journal of Vibration and Shock, 2024, 43(16): 67-76

参考文献

[1] Wilson G P, Saurenman H J, Nelson J T. Control of ground-borne noise and vibration[J]. Journal of Sound and Vibration, 1983, 87(2): 339-350. [2] Crockett A R, Pyke J R. Viaduct design for minimization of direct and structure-radiated train noise[J]. Journal of Sound and Vibration, 2000, 231(3): 883-897. [3] Saurenman H, Phillips J. In-service tests of the effectiveness of vibration control measures on the BART rail transit system[J]. Journal of Sound and Vibration, 2006, 293(3-5): 888-900 [4] Cui F, Chew C. The effectiveness of floating slab track system — Part I. Receptance methods[J]. Applied Acoustics, 2000, 61(4): 441-453. [5] Lombaert G, Degrande G, Vanhauwere B, et al. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs[J]. Journal of Sound and Vibration, 2006, 297(3-5): 946-961. [6] 吴天行. 轨道减振器与弹性支承块或浮置板轨道组合的隔振性能分析[J]. 振动工程学报, 2007, 20(5): 489-493. WU Tianxing. On effectiveness of vibration isolation for super-elastic rail support combined with booted sleeper or floating slab track[J]. Journal of Vibration Engineering, 2007, 20(5): 489-493. [7] 刘锦辉, 刘鹏辉, 杨宜谦, 等. 高架线减振轨道减振降噪效果测试与分析[J]. 振动与冲击, 2022, 41(15): 83-89. LIU Jinhui, LIU Penghui, YANG Yiqian, et al. On Tests and analysis for vibration and noise reduction effect of track on metro visduct [J]. Journal of Vibration and Shock, 2022, 41(15): 83-89. [8] Li Z G, Wu T X. Modelling and analysis of force transmission in floating-slab track for railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(1): 45-57. [9] 李响, 任尊松, 徐宁. 地铁小半径曲线段钢弹簧浮置板轨道的钢轨波磨研究[J]. 铁道学报, 2017, 39(8): 70-76. LI Xiang, REN Zunsong, XU Ning. Study on rail corrugation of steel spring floating slab track on subway with small radius curve track[J]. Journal of the China Railway Society, 2017, 39(8): 70-76. [10] Li W, Zhou Z J, Zhou S L, et al. Mechanism of rail corrugation formation on metro curves with a type of floating-slab track[C]. 12th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, 4-7 September 2022, Melbourne, Victoria, Australia. 2022. [11] Jin X S, Li W, Wen Z F, et al. An investigation into rail corrugation, its mechanisms and effects on the dynamic behavior of metro trains and tracks in China[J]. International Journal of Railway Technology, 2016, 5(3): 1-29. [12] 刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143. LIU Guoyun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances [J] Journal of Vibration and Shock, 2019, 38(6): 137-143. [13] 丁德云, 刘维宁, 李克飞, 等. 钢弹簧浮置板轨道参数研究[J]. 中国铁道科学, 2011, 32(1): 30-35. DING Deyun, LIU Weining, LI Kefei, et al. Parametric study of the steel spring floating slab track[J]. China Railway Science, 2011, 32(1): 30-35. [14] 丁德云, 刘维宁, 张宝才, 等. 浮置板轨道的模态分析[J]. 铁道学报, 2008, 30(3): 61-64. DING Deyun, LIU Weining, ZHANG Baocai, et al. Modal analysis on the floating slab track[J]. Journal of the China Railway Society, 2008, 30(3): 61-64. [15] 唐伟, 李霞, 李伟, 等. 钢弹簧浮置板轨道振动特性与钢轨波磨关系研究[J]. 铁道科学与工程学报, 2022, 19(12): 3636-3644. TANG Wei, LI Xia, LI Wei, et al. Study on the relationship between steel spring floating slab track vibration characteristics and rail corrugation [J]. Journal of Railway Science and Engineering, 2022, 19(12): 3636-3644. [16] 陆文学, 杨新文, 赵治均. 地铁浮置板轨道系统导纳特性与钢轨波磨关系研究[J]. 噪声与振动控制, 2022, 42(5): 171-176. LU Wenxue, YANG Xinwen, ZHAO Zhijun. Study on the relationship between admittance characteristics of metro floating slab track system and rail corrugation. [J]. Noise and Vibration Control, 2022, 42(5): 171-176. [17] 侯巧省. 地铁减振轨道的轮轨振动特性研究[D]. 北京:北京交通大学, 2014. Hou Qiaoxing. Wheel rail vibration characteristics research of metro vibration reduction tracks[D]. Beijing: Beijing Jiaotong University, 2014. [18] 钱彦行, 蔡成标, 杨昀, 等. 地铁直线段钢弹簧浮置板轨道钢轨波磨萌生原因及参数影响分析[J]. 铁道标准设计, 2022, 66(12): 49-55. QIAN Yanhang, CAI Chengbiao, YANG Yun, et al. Analysis on the causes of rail corrugation and the influence of parameters on the steel spring floating slab track of the metro line [J]. Railway Standard Design, 2022, 19(12): 3636-3644. [19] 李响, 任尊松. 地铁钢弹簧浮置板轨道垂向振动特性研究[J]. 华南理工大学学报(自然科学版), 2018, 46(12): 103-110, 120. LI Xiang, REN Zunsong. Study on the vertical vibration characteristics of steel spring floating slab track in subway[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(12): 103-110, 120. [20] 姚学东. 柔性轮对作用下地铁浮轨式扣件轨道直线段短波长波磨形成机理研究[D]. 成都: 西南交通大学, 2023. YAO Xuedong. Research on formation mechanism of short-pitch rail corrugation on metro tangent tracks with floating fasteners under action of flexible wheelsets[D]. Chengdu: Southwest Jiaotong University, 2023. [21] 魏伟, 翟婉明. 轮轨系统高频振动响应[J]. 铁道学报,1999, 21(2): 42-45. WEI Wei, ZHAI Wanming. Dynamic response of wheel/rail system to high-frequency excitation[J]. Journal of the China Railway Society, 1999, 21(2): 42-45. [22] Yang X X, Tao G Q, Li W, et al.: On the formation mechanism of high-order polygonal wear of metro train wheels: Experiment and simulation, Engineering Failure Analysis, 2021, (127)105512: 1-14. [23] 周志军, 李伟, 温泽峰, 等. 采用GJ-Ⅲ型扣件地铁轨道的钢轨波磨形成机理[J]. 中国铁道科学, 2022, 43(3): 37-49. ZHOU Zhijun, LI Wei, WEN Zefeng, et al. Formation mechanism of rail corrugation on metro track with GJ-Ⅲ fastener [J] China Railway Science, 2022, 43(3): 37-49. [24] Yu M, Wang W, Liu J, et al. The transient response of high-speed wheel/rail rolling contact on “roaring rails” corrugation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(10): 1068-1080. [25] Zhao X, Li Z L. The solution of frictional wheel–rail rolling contact with a 3D transient finite element model: Validation and error analysis. Wear. 2011, 271: 444-452. [26] Zhao X, Li Z L. A three-dimensional finite element solution of frictional wheel-rail rolling contact in elasto-plasticity[J]. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of engineering tribology, 2015, 229(1): 86-100. [27] Abaqus User Guide, Version 6.14. Dassault Systèmes Simulia Corp., 2012. [28] 赵鑫,温泽峰,王衡禹,等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7. ZHAO Xin, WEN Zefeng, WANG Hengyu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7. [29] 姚学东, 李伟, 周志军, 等. 柔性轮对作用下浮轨式扣件轨道动力特性分析[J]. 振动与冲击, 2023, 42(24): 42-50. [30] 陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018. [31] 关庆华, 周业明, 李伟, 等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报, 2019, 55(8): 118-127. GUAN Qinghua, ZHOU Yeming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127. [32] Radford, R W. Wheel/Rail vertical forces in high-speed railway operation[J]. Journal of Engineering for Industry, 1977, 99(4): 849.

PDF(3082 KB)

Accesses

Citation

Detail

段落导航
相关文章

/