基于准零刚度支撑结构的低频主动隔振平台研究

李青 1, 何柯达 2, 3, 杨鸿杰 2, 3, 薛羽竣 2, 3, 马超 2, 3, 王天舒 1, 刘磊 2, 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 84-91.

PDF(2000 KB)
PDF(2000 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (16) : 84-91.
论文

基于准零刚度支撑结构的低频主动隔振平台研究

  • 李青 1,何柯达 2,3,杨鸿杰 2,3,薛羽竣 2,3,马超 2,3,王天舒 1,刘磊 2,3
作者信息 +

A study on a low-frequency active vibration isolation platform based on quasi-zero stiffness supporting structures

  • LI Qing1,HE Keda2,3,YANG Hongjie2,3,XUE Yujun2,3,MA Chao2,3,WANG Tianshu1,LIU Lei2,3
Author information +
文章历史 +

摘要

针对量子科学实验、精密制造等先进应用对亚赫兹微振动的抑制需求,研究基于准零刚度支撑结构和分离式音圈作动器的低频主动隔振技术。首先给出一种低频主动隔振平台设计方法,考虑准零刚度结构的等效动力学特性,采用牛顿-欧拉方法建立平台的动力学模型;然后基于所建立动力学模型分析多自由度耦合下平台的扰动传递特性并设计主动隔振算法;最后研制低频主动隔振平台进行实验验证。实验结果表明,所开发主动隔振平台能够在三个线自由度上实现优于98.3%的微振动抑制效果,在0.1~10Hz频率范围内载荷z方向微振动小于1.3×10-8g。

Abstract

Aiming at the isolation requirements of sub-Hz micro-vibration of advanced applications such as quantum science experiments and precision manufacturing, low-frequency active vibration isolation technology based on quasi-zero stiffness supporting structures and non-contact voice coil actuators are studied. First, a low-frequency active vibration isolation platform design method is proposed, while the dynamic model of the platform is established by Newton-Euler method considering the equivalent dynamics of quasi-zero stiffness structure. Then, the disturbance transfer characteristics of the platform with multi-degree-of-freedom coupling are analyzed, the active vibration isolation control algorithm is designed and vibration isolation simulation is carried out. Finally, a low-frequency active vibration isolation platform is developed for experimental verification. The experimental results illustrate that the developed platform can achieve a micro-vibration suppression effect of better than 98.3% in three directions. In frequency range of 0.1-10Hz, the micro-vibration in the z-direction of the payload is less than 1.3×10-8g.

关键词

低频微振动 / 主动隔振 / 准零刚度结构 / 音圈作动器

Key words

low-frequency micro-vibration / active vibration isolation / quasi-zero stiffness / voice coil actuator

引用本文

导出引用
李青 1, 何柯达 2, 3, 杨鸿杰 2, 3, 薛羽竣 2, 3, 马超 2, 3, 王天舒 1, 刘磊 2, 3. 基于准零刚度支撑结构的低频主动隔振平台研究[J]. 振动与冲击, 2024, 43(16): 84-91
LI Qing1, HE Keda2, 3, YANG Hongjie2, 3, XUE Yujun2, 3, MA Chao2, 3, WANG Tianshu1, LIU Lei2, 3. A study on a low-frequency active vibration isolation platform based on quasi-zero stiffness supporting structures[J]. Journal of Vibration and Shock, 2024, 43(16): 84-91

参考文献

[1] 摆海龙, 白金海, 胡栋, 等. 原子重力仪的隔振技术研究现状[J]. 应用力学学报, 2021(06): 2201-2207. BAI Hailong, BAI Jinhai, HU Dong, et al. Research status of vibration isolation technologies for atom gravimeter[J]. Chinese journal of applied mechanics, 2021(06): 2201-2207. [2] HU Z K, SUN B L, DUAN X C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical review A, 2013, 88(4): 043610. [3] 王吉鹏, 胡栋, 白金海, 等. 原子干涉重力仪隔振方法的研究现状及展望[J]. 计测技术, 2020, 40(6): 15-20. WANG Jipeng, HU Dong, BAI Jinhai, et al. Review on vibration isolation method of atom-interferometric gravimeter[J]. Metrology & measurement technology, 2020, 40(6): 15-20. [4] 李国平. 面向精密仪器设备的主动隔振关键技术研究[D]. 浙江大学博士论文, 2010. LI Guoping. Study on active vibration isolative techniques for precise instruments[D]. Zhejiang university, 2010. [5] 丁基恒. 精密隔振系统超低频测量与控制方法研究[D]. 华中科技大学, 2019. DING Jiheng. Study on the methods of ultra-Low frequency measurement and active control of precision vibration isolation system[D]. Huazhong university of science & technology, 2019. [6] LI Q, WANG T, PU H, et al. A novel tunable electromagnetic gravity compensator with low natural frequency for precision assembly[C]//2021 6th IEEE international conference on advanced robotics and mechatronics. IEEE, 2021: 25-30. [7] BALAJI P S, KARTHIK SELVAKUMAR K. Applications of nonlinearity in passive vibration control: a review[J]. Journal of vibration engineering & technologies, 2021, 9: 183-213. [8] 张赣波, 赵耀. 反共振双层隔振系统分析[J]. 振动与冲击, 2022, 41(15): 29-35. ZHANG Ganbo, ZHAO Yao. Analysis of anti-resonant two-stage isolation system[J]. Journal of vibration and shock, 2022, 41(15): 29-35. [9] 尹蒙蒙, 丁虎, 陈立群. X型准零刚度隔振器动力学设计及分析[J]. 动力学与控制学报, 2021, 19(5): 46-52. YIN Mengmeng, DING Hu, CHEN Liqun. Dynamic design and analysis of X-shaped quasi-zero stiffness isolator[J]. Journal of dynamics and control, 2021, 19(5): 46-52. [10] PALOMARES E, NIETO A J, MORALES A L, et al. Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system[J]. Journal of sound and vibration, 2018, 414: 31-42. [11] WINTERFLOOD J, BLAIR D G, SLAGMOLEN B. High performance vibration isolation using springs in Euler column buckling mode[J]. Physics letters A, 2002, 300(2-3): 122-130. [12] YAN B, YU N, WANG Z, et al. Lever-type quasi-zero stiffness vibration isolator with magnetic spring[J]. Journal of sound and vibration, 2022, 527: 116865. [13] YE K, JI J C, BROWN T. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations[J]. Mechanical systems and signal processing, 2021, 149: 107340. [14] WANG K, ZHOU J, CHANG Y, et al. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism[J]. Nonlinear dynamics, 2020, 101: 755-773. [15] 刘琪, 李占龙, 王建梅, 等. 准零刚度低频隔振技术的研究进展[J]. 机械强度, 2021, 43(1): 17-26. LIU Qi, LI Zhanlong, WANG Jianmei, et al. Research progress on quasi-zero stiffness low-frequency vibration isolation technology[J]. Journal of mechanical strength, 2021, 43(1): 17-26. [16] SHAHRAEENI M, SOROKIN V, MACE B, et al. Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator[J]. Journal of sound and vibration, 2022, 526: 116822. [17] 胡晓滢, 周春燕. 用于航天器微振动试验的高静刚度–低动刚度隔振器研究进展[J]. 航天器环境工程, 2020, 37(4): 315-322. HU Xiaoying, ZHOU Chunyan. Isolators with high static stiffness and low dynamic stiffness for spacecraft micro-vibration experiments[J]. Spacecraft environment engineering, 2020, 37(4): 315-322. [18] 王嘉铭,孔永芳,黄海. 基于Stewart平台的隔振与抑振协同控制研究[J]. 振动与冲击, 2019, 38(7): 186-194. WANG Jiaming, KONG Yongfang, HUANG Hai. Cooperative control for vibration isolation and suppression based on Stewart platform[J]. Journal of vibration and shock, 2019, 38(7): 186-194. [19] SHIN Y H, MOON S J, KIM Y J, et al. Vibration control of scanning electron microscopes with experimental approaches for performance enhancement[J]. Sensors, 2020, 20(8): 2277. [20] LIU C, JING X, DALEY S, et al. Recent advances in micro-vibration isolation[J]. Mechanical systems and signal processing, 2015, 56: 55-80. [21] WANG M, HU Y, SUN Y, et al. An adjustable low-frequency vibration isolation Stewart platform based on electromagnetic negative stiffness[J]. International journal of mechanical sciences, 2020, 181: 105714. [22] HE K, LI Q, LIU L, et al. Active vibration isolation of ultra-stable optical reference cavity of space optical clock[J]. Aerospace science and technology, 2021, 112: 106633. [23] 杨鸿杰, 代锋, 刘磊, 等. 综合大质量偏心与弹簧横向刚度超静主动隔振平台动力学解耦控制研究[J]. 振动与冲击, 2023, 42(1): 1-9. YANG Hongjie, DAI Feng, LIU Lei, et al. Dynamic decoupling control of super static active vibration isolation platform with large mass eccentricity and spring lateral stiffness[J]. Journal of vibration and shock, 2023, 42(1): 1-9. [24] DING J, LUO X, CHEN X, et al. Design of active controller for low-frequency vibration isolation considering noise levels of bandwidth-extended absolute velocity sensors[J]. IEEE/ASME transactions on mechatronics, 2018, 23(4): 1832-1842. [25] 罗东云, 程冰, 周寅, 等. 基于滑模鲁棒算法的超低频主动隔振系统[J]. 物理学报, 2018, 67(2): 020702. LUO Dongyun, CHENG Bing, ZHOU Yin, et al. Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm[J]. Acta physica sinica, 2018, 67(2): 020702. [26] 陈斌, 龙金宝, 谢宏泰, 等. 可移动三维主动减振系统及其在原子干涉重力仪上的应用[J]. 物理学报, 2019, 68(18): 183301-183301. CHEN Bin, LONG Jinbao, XIE Hongtai, et al. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry[J]. Acta physica sinica, 2019, 68(18): 183301.

PDF(2000 KB)

183

Accesses

0

Citation

Detail

段落导航
相关文章

/