民机典型机身框段垂直入水冲击特性研究

牟浩蕾1,高飞2,王子龙2,肖培2,冯振宇1,解江1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 297-307.

PDF(5551 KB)
PDF(5551 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (1) : 297-307.
论文

民机典型机身框段垂直入水冲击特性研究

  • 牟浩蕾1,高飞2,王子龙2,肖培2,冯振宇1,解江1
作者信息 +

Vertical water-entry impact characteristics of typical fuselage section of civil aircraft

  • MOU Haolei1, GAO Fei2, WANG Zilong2, XIAO Pei2, FENG Zhenyu1, XIE Jiang1
Author information +
文章历史 +

摘要

为了研究民机典型机身框段垂直入水冲击特性,首先采用入水冲击试验系统开展不同高度下的圆柱体入水冲击试验,研究其入水冲击响应;其次基于LS-DYNA任意拉格朗日-欧拉(ALE)方法建立流体域均匀网格及局部加密网格模型,通过对比圆柱体入水冲击试验结果验证网格收敛性及流体域模型;最后基于验证的流体域模型及机身框段模型,研究机身框段在6.02m/s速度下的入水冲击特性,并分析与刚性地面冲击特性的差异性以及不同入水冲击速度下的机身框段冲击响应特性。结果表明:ALE方法在结构入水冲击方面具有较高的模拟精度,且采用局部加密网格时可以极大减少流体域模型网格数量和入水冲击计算时间。机身框段入水冲击时的失效模式与刚性地面冲击时的失效模式较为一致,但机身框段结构整体变形程度减小,客舱地板横梁变形程度增大;机身框仍是吸能最多的部件,但水也吸收了大量的冲击能量,使得地板导轨处的加速度始终小于刚性地面冲击时的加速度;随着机身框段入水冲击速度的增大,机身框发生弯折和上翘的程度加剧。

Abstract

To study the vertical water-entry impact characteristics of civil aircraft typical fuselage section, the cylinder water-entry impact test was firstly carried out by using the water-entry impact test system. Secondly, the uniform grid fluid model and locally refined grid fluid model were established based on the LS-DYNA ALE method, and were verified by comparing the water-entry impact test results. Finally, the water-entry impact characteristics of fuselage section at 6.02m/s were studied based on the verified fluid domain model and fuselage section model, the difference between water-entry impact characteristics and rigid ground impact characteristics, and the water-entry impact response of fuselage section at different speeds were further analyzed. The results show that the ALE method has higher accuracy for the structure water-entry impact simulation, and the fluid model grids numbers and the water-entry impact calculation time can be greatly reduced when using the locally refined grid fluid model. The water-entry impact failure mode of fuselage section is consistent with the rigid ground impact failure mode, but the overall deformation degree of fuselage section decreases, and the deformation degree of cabin floor beam increases. The frames are still the most energy-absorbing structural components, and a large amount of impact energy are absorbed by the water, resulting in the acceleration at the floor rail is always smaller. With the increase of the water -entry impact velocity, the degree of bending and upturning of fuselage frames increases.

关键词

民机机身框段 / 入水冲击试验 / 结构冲击响应 / 数值模拟

Key words

civil aircraft fuselage section / water-entry impact test / structure impact response / numerical simulation

引用本文

导出引用
牟浩蕾1,高飞2,王子龙2,肖培2,冯振宇1,解江1. 民机典型机身框段垂直入水冲击特性研究[J]. 振动与冲击, 2024, 43(1): 297-307
MOU Haolei1, GAO Fei2, WANG Zilong2, XIAO Pei2, FENG Zhenyu1, XIE Jiang1. Vertical water-entry impact characteristics of typical fuselage section of civil aircraft[J]. Journal of Vibration and Shock, 2024, 43(1): 297-307

参考文献

[1] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123. [2] 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3): 17-39. MOU Hao-lei, XIE Jiang, FENG Zhen-yu. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39. [3] MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview[J]. Progress in Aerospace Sciences, 2020, 119: 1-22. [4] 童明波, 陈吉昌, 李乐, 等. 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报, 2021, 42(5): 123-157. TONG Ming-bo, CHEN Ji-chang, LI Le, et al. State of the art and perspectives of numerical simulation of aircraft structural integrity from hydrodynamics - Part I: Ditching and floating [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 123-157. (in Chinese) [5] PANCIROLI R. Water entry of flexible wedges: Some issues on the FSI phenomena[J]. Applied Ocean Research, 2013, 39: 72-74. [6] 孙丰, 魏飞, 吴彬, 等. 大型水陆两栖飞机舱段入水冲击实验研究[J]. 振动与冲击, 2019, 38(12): 39-43+52. SUN Feng, WEI Fei,WU Bin, et al. An experimental study on water impact of large amphibious aircrafts [J]. Journal of vibration and shock, 2019, 38(12): 39-43+52. (in Chinese) [7] SHAH S A. Water impact investigations for aircraft ditching analysis[D]. Melbourne: Royal Melbourne Institute of Technology University, 2010. [8] 张岳青, 白治宁, 曾小凡,等.楔形和弧形结构入水冲击响应研究[J]. 船舶力学, 2020, 24(3): 400-408. ZHANG Yue-qing, BAI Zhi-ning, Zeng Xiao-fan, et al. Study of water impact response of wedge- and arc-shaped structures [J]. Journal of Ship Mechanics, 2020, 24(3): 400-408. (in Chinese) [9] PANCIROLI R, UBERTINI S, MINAK G, et al. Experiments on the dynamics of flexible cylindrical shells impacting on a water surface[J]. Experimental Mechanics, 2015, 55(8): 1537-1550. [10] RUSSO S, BISCARINI C, FACCI A L, et al. Experimental assessment of buoyant cylinder impacts through high-speed image acquisition[J]. Journal of Marine Science and Technology, 2018, 23(6): 1-14. [11] 夏维学, 王聪, 曹伟, 等. 圆柱体入水空泡壁面运动特性与空泡演化关系实验研究[J]. 振动与冲击, 2020, 39(15): 1-7+17. XIA Wei-xue, WANG Cong, CAO Wei, et al. Tests for relationship between cavity evolution and motion characteristics of cavity wall during a cylinder entry into water [J]. Journal of vibration and shock, 2020, 39(15): 1-7+17. (in Chinese) [12] 王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29. WANG Ming-zhen, CAO Dong-feng, WU Bin, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method [J]. Journal of Chongqing University, 2020, 43(6): 21-29. (in Chinese) [13] FASANELLA E L, JACKSON K E, LYLE K H, et al. Multi-Terrain Impact Tests and Simulations of an Energy Absorbing Fuselage Section[J]. Journal of the American Helicopter Society, 2007, 52(2): 159-168. [14] XIAO T, QIN N, LU Z, et al. Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations[J]. Aerospace Science and Technology, 2017, 66: 28-43. [15] TAY Y Y, BHONGE P S, LANKARANI H M. Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact[J]. International Journal of Crashworthiness, 2015, 20(5): 464-482. [16] SIEMANN M H, KOHLGRÜBER D, VOGGENREITER H. Numerical simulation of flexible aircraft structures under ditching loads[J]. CEAS Aeronautical Journal, 2017, 8(3): 505-521. [17] SIEMANN M H. Numerical and experimental investigation of the structural behavior during aircraft emergency landing on water [D]. Stuttgart: Institute of Aircraft Design University of Stuttgart; 2016. [18] ANDREW. Computational simulation of an unmanned air vehicle impacting water[D]. Iowa State University. 2006. [19] 闫明. 基于有限体积法的飞机水上迫降运动特性的数值研究[D]. 武汉: 武汉理工大学, 2012. YAN Ming. Numerical investigation on aircraft ditching's characteristic of motion by FVM [D]. Wu Han: Wuhan University of Technology, 2012. (in Chinese) [20] GUO B D, LIU P Q, QU Q L. Effect of pitch angle on the initial stage of a transport aircraft ditching[J]. Chinese Journal of Aeronautics, 2013, 26(1): 17-26. [21] FASANELLA E L, JACKSON K E, LYLE K H. Finite element simulation of a full-scale crash test of a composite helicopter[J]. Journal of the American Helicopter Society, 2002, 47(3): 156-168. [22] HUGHES K, CAMPBELL J, VIGNJEVIC R. Application of the finite element method to predict the crashworthy response of a metallic helicopter under floor structure onto water[J]. International Journal of Impact Engineering, 2008, 35(5): 347-362. [23] SIEMANN M H, LANGRAND B. Coupled fluid-structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches[J]. Computers & Structures, 2016, 188: 95-108. [24] SONG Y, HORTON B, BAYANDOR J. Verified fuselage section water impact modelling[J]. The Aeronautical Journal, 2019, 123(1268): 1740-1754. [25] 张岳青, 徐绯, 金思雅, 等. 楔形体入水冲击响应的试验研究及应用[J]. 机械强度, 2015, 37(2): 226-231. ZHANG Yue-qing, XU Fei, JIN Si-ya, et al. Experimental study and application on water impact response of wedge-shaped structure[J]. Journal of Mechanical Strength, 2015, 37(2): 226-231. (in Chinese) [26] SEDDON C M, MOATAMEDI M, SOULI M H. Experimental and numerical simulation of structure/water impact[C]// ASME/JSME Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2004. [27] ORTIZ R, PORTEMONT G, CHARLES J L, et al. Assessment of explicit FE capabilities for full scale coupled fluid/structure aircraft ditching simulation[C]// ICAS 2002: 23rd International Congress of Aeronautical Sciences, proceedings, Toronto, Canada. 2002. [28] JACKSON K E, FUCHS Y T. Comparison of ALE and SPH simulations of vertical drop tests of a composite fuselage section into water[C]// Proceedings of the 10th LS-DYNA Users Conference, Dearborn, MI. 2008. [29] 任毅如, 向锦武, 郑建强, 等. 典型民机机身段水上冲击数值模拟方法及其耐撞性研究[J]. 工程力学, 2016, 33(5): 241-248. REN Yi-ru, XIANG Jin-wu, ZHENG Jian-qiang, et al. Research on the numerical method and crashworthiness of typical civil aircraft fuselage for water impact [J]. Engineering Mechanics, 2016, 33(5): 241-248. (in Chinese) [30] Federal Aviation Administration, Composite aircraft structure [S]. AC 20-107B, 2009. [31] 牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析[J]. 航空学报, 2023: 1-15. MOU Hao-lei, XIE Jiang, FENG Zhen-yu, et al. Crashworthiness characteristics analysis of a typical fuselage section of large transport aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023: 1-15. (in Chinese) [32] 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报, 2022, 43(6): 261-272. XIE Jiang, MOU Hao-lei, FENG Zhen-yu, et al. Impact tests and numerical simulation of typical civil aircraft sub-cargo structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 261-272. (in Chinese) [33] MOU H L, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology, 2020, 107: 1-15.

PDF(5551 KB)

363

Accesses

0

Citation

Detail

段落导航
相关文章

/