基于小波包熵和高斯混合模型的轴承性能退化评估

李巍华;戴炳雄;张绍辉

振动与冲击 ›› 2013, Vol. 32 ›› Issue (21) : 35-40.

PDF(1959 KB)
PDF(1959 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (21) : 35-40.
论文

基于小波包熵和高斯混合模型的轴承性能退化评估

  • 李巍华,戴炳雄,张绍辉
作者信息 +

Bearing performance degradation assessment based on Wavelet packet entropyand Gaussian mixture model

  • Li Wei-hua,Dai Bing-xiong,Zhang Shao-hui
Author information +
文章历史 +

摘要

为准确的描述设备性能退化的过程,采用小波包熵(Wavelet packet entropy, WPE)与高斯混合模型(Gaussian mixture model,GMM)对轴承性能退化状态进行评估。首先,提取轴承振动信号的小波包熵作为特征向量。接着以轴承正常状态数据的特征向量建立轴承性能的GMM评估基准模型。然后对试验中每一运行状态建立相应的GMM模型,并计算对应状态GMM相对基准模型的偏离程度,判断轴承是否发生退化以及退化程度。试验分析表明,与基于逻辑回归的设备性能退化方法相比,基于小波包熵与高斯混合模型的设备性能退化方法无需设备历史数据,不需要定义退化先验概率,能够较准确的反映轴承在全寿命周期中性能退化的过程。

Abstract

To assess the equipment performance degradation accurately, wavelet packet entropy (WPE) and Gaussian mixture model (GMM) were combined to evaluate the degradation state of bearing performance in this research. Firstly, WPEs, as the feature vectors, were extracted from the bearing vibration signal to describe the bearing running state. Secondly, the feature vectors under normal state were used to construct the Gaussian mixture model as the baseline. Then the GMM of every running state is established during the experiments, and the corresponding deviation value (DV) from the baseline model is calculated to evaluate whether degradation is occurred and degradation level of the bearing. Experiment results indicated that, comparing with the logistic regression based degradation evaluation method, the proposed scheme can depict the bearing degradation process accurately in the full life cycle without the need of historical data or predefining the prior probability of each possible degradation state.

关键词

性能退化 / 小波包熵 / 高斯混合模型 / 偏离值 / 轴承

Key words

performance degradation / wavelet packet entropy / Gaussian mixture model / deviation value / bearing

引用本文

导出引用
李巍华;戴炳雄;张绍辉. 基于小波包熵和高斯混合模型的轴承性能退化评估[J]. 振动与冲击, 2013, 32(21): 35-40
Li Wei-hua;Dai Bing-xiong;Zhang Shao-hui. Bearing performance degradation assessment based on Wavelet packet entropyand Gaussian mixture model[J]. Journal of Vibration and Shock, 2013, 32(21): 35-40

PDF(1959 KB)

1074

Accesses

0

Citation

Detail

段落导航
相关文章

/