Mathematical modeling of a giant magnetostrictive actuator by using an asymmetric PI model with Hammerstein structure

LI Ruihong1, XIE Fei1,2, WU Mingzhong1, YANG Fan1, CHEN Hongwei1, LIN Dezhao1, LI Chenghong1

Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (14) : 253-263.

PDF(2173 KB)
PDF(2173 KB)
Journal of Vibration and Shock ›› 2022, Vol. 41 ›› Issue (14) : 253-263.

Mathematical modeling of a giant magnetostrictive actuator by using an asymmetric PI model with Hammerstein structure

  • LI Ruihong1, XIE Fei1,2, WU Mingzhong1, YANG Fan1, CHEN Hongwei1, LIN Dezhao1, LI Chenghong1
Author information +
History +

Abstract

The Giant Magnetostrictive Actuator (GMA), which is one of intelligent drivers made of one kind of smart materials, magnetostrictive material, is widely used in many fields due to its excellent performance, but its inherent hysteresis nonlinearity limits its further development, so modeling of hysteresis nonlinearity has been the focus of the field. In this paper, based on the Hammerstein structure, the asymmetric Prandtl-Ishlinskii (PI)  model is applied to represent the non-linear link of the Hammerstein structure, and the auto-regressive with exogenous (ARX) model is used to represent the dynamic links of the Hammerstein structure (especially for high-frequency signals), and the order and specific form of the transfer function of the dynamic system are identified based on the judgment process of the AIC criterion. An asymmetric PI model with Hammerstein structure for the GMA is developed, which effectively reduces the number of identified parameters. The experimental results show that the asymmetric PI model with Hammerstein structure has higher accuracy than the single asymmetric PI model, especially for larger frequency excitation signals.
Key words: Giant Magnetostrictive Actuator;Hysteresis nonlinear;Prandtl-Ishlinskii (PI) model;Hammerstein structure

Key words

Giant Magnetostrictive Actuator / Hysteresis nonlinear / Prandtl-Ishlinskii (PI) model / Hammerstein structure

Cite this article

Download Citations
LI Ruihong1, XIE Fei1,2, WU Mingzhong1, YANG Fan1, CHEN Hongwei1, LIN Dezhao1, LI Chenghong1. Mathematical modeling of a giant magnetostrictive actuator by using an asymmetric PI model with Hammerstein structure[J]. Journal of Vibration and Shock, 2022, 41(14): 253-263

References

[1] 李圣怡,黄长征,王贵林. 微位移机构研究[J]. 航空精密制造技术, 2000, 36(4):5-9.
LI Sheng-yi, HUANG Chang-zhen, WANG Gui-lin. Study on Micro-motion Mechanism[J]. Aviation Precision Manufacturing Technology, 2000, 36(4):5-9.
[2] 杜立群, 颜云辉, 王德俊. 智能结构发展综述[J]. 机械设计与制造, 1997(3):49-50
DU Li-he, YAN Yun-hui, WANG Jun-de. An overview of the development of intelligent structures [J].Machinery Design and Manufacture, 1997(3):49-50
[3] 贾振元,郭东明. 超磁致伸缩材料微位移执行器原理与应用[M]. 科学出版社, 2008.
JIA Zhen-yuan, GUO Dong-ming. Theory and applications of giant magnetostrictive microdisplacement actuator [M]. Science Press, 2008.
[4] 甄玉云. 基于Prandtl-Ishlinskii模型的GMA精密定位研究[D]. 武汉:武汉理工大学, 2009.
[5] Philips D A , Dupre L R , Melkebeek J A . Comparison of Jiles and Preisach Hysteresis Models in Magnetodynamics [J]. IEEE Transactions on Magnetics, 1995, 31(6):3551-3553.
[6] 郭国法,党选举. 基于PI模型的压电陶瓷执行器迟滞特性建模[J]. 微计算机信息, 2008, 24(4):288-290.
GUO Guo-fa,DANG Xuan-ju. Modeling for piezoceramic actuators based on pi model [J]. Microcomputer Information, 2008, 24(4): 288-290.
[7] 唐宏波. 超磁致伸缩执行器的磁滞非线性数学模型与应用特性研究[D]. 南京:南京航空航天大学, 2015.
[8] 赵寅. 超磁致伸缩驱动器建模及驱动控制研究[D]. 上海:上海交通大学, 2013.
[9] 杨斌堂,赵寅,彭志科, 等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学精密工程, 2013, 21(1):124-130.
YANG Bin-tang, ZHAO Yin, PENG Zhi-ke, et al. Real-time compensation control- of hysteresis based on Prandtil-Ishlinskii operator for GMA [J]. Optics and Precision Engineering, 2013, 21(1): 124-130.
[10] 翟鹏,肖博涵,贺凯,等. 超磁致伸缩致动器的复合反馈控制及其在变椭圆销孔精密加工中的应用[J]. 光学精密工程, 2016, 24(6):1389-1398.
ZHAI Peng, XIAO Bo-han, HE Kai, et al. Composite backward control for GMA and its application in high precision machining of variable ellipse pinhole [J]. Optics and Precision Engineering, 2016, 24(6): 1389-1398.
[11] Li Z, Feng Y, Cai T, et al. Modeling and compensation of asymmetric hysteresis nonlinearity for magnetostrictive actuators with an asymmetric shifted Prandtl-Ishlinskii model[C]// American Control Conference, IEEE, 2012:1658-1663.
[12] Xiao B, Zhai P, Zhou Y, et al. Combined control for GMA with modified P-I model and hysteresis phase compensation[C]// IEEE International Conference on Information and Automation, IEEE, 2015:2937-2942.
[13] Aljanaideh O, Janaideh M A, Rakotondrabe M. Inversion-free feedforward dynamic compensation of hysteresis nonlinearities in piezoelectric micro/nano-positioning actuators[C]// IEEE International Conference on Robotics and Automation. IEEE, 2015:2673-2678.
[14] Aljanaideh O, Rakotondrabe M, Khasawneh H, et al. Rate-dependent Prandtl-Ishlinskii hysteresis compensation using inverse-multiplicative feedforward control in magnetostrictive Terfenol-D based actuators[C]// American Control Conference, IEEE, 2016:649-654.
[15] Peng X, Guo Z, Wei X, et al. A rate-dependent hysteresis model for giant magnetostrictive actuators using the dynamic weight and dynamic threshold based modified Prandtl-Ishlinskii model[C]// 2017 29th Chinese Control And Decision Conference. Chongqing:IEEE, 2017:1651-1656.
[16] 郭咏新,张臻,王贞艳,等. 超磁致伸缩作动器的率相关振动控制实验研究[J]. 振动与冲击, 2015, 34(12): 51-57.
GUO Yong-xin, ZHANG Zhen, WANG Zhen-yan, et al. Experimental investigation on rate-dependent vibration control of giant magnetostrictive actuators [J]. Journal of vibration and shock, 2015,34(12):51-57.
[17] 孙洪鑫,李建强,王修勇,等. 基于磁致伸缩作动器的拉索主动控制时滞补偿研究[J]. 振动与冲击, 2017, 36(14): 208-215.
SUN Hong-xin, LI Jia-qiang, WANG Xiu-yong, at el. Time delay compensation for the active cable vibration control using giant magnetostrictive actuators [J]. Journal of vibration and shock, 2017, 36(14):208-215.
[18] 张伟,柳萍,刘青松,等. 基于模糊树的Hammerstein-like模型对超磁致伸缩作动器的建模与控制[J]. 2013, 32(15): 184-189.
ZHANG Wei, LIU Ping, LIU Qing-song, at el. Modeling and control of giant magnetostrictive actuator based on a hammerstein-like model by using fuzzy tree method [J]. Journal of vibration and shock, 2013, 32(15):184-189.
[19] Brokate M, Sprekels J. Hysteresis and Phase Transitions[M]. Springer New York, 1996.
[20] Bobbio S, Milano G, Serpico C, et al. Models of magnetic hysteresis based on play and stop hysterons[J]. IEEE Transactions on Magnetics, 1997, 33(6):4417-4426.
[21] Li Z. Modeling and Control of Magnetostrictive-actuated Dynamic Systems[D]. Montreal :Concordia University, 2015.
[22] 张栋. 压电工作台微定位系统建模与控制技术[D]. 山东:山东大学, 2009.
[23] 郑总准, 吴浩, 王永骥. 基于序列二次规划算法的再入轨迹优化研究[J]. 航天控制, 2009, 27(6): 8-13+18.
ZHENG Zong-zhun, WU Hao, WANG Yong-ji. Reentry trajectory optimization using sequential quadratic programming [J]. Aerospace Control, 2009, 27(6): 8-13+18.
[24] Nanda S J , Panda G , Majhi B . Development of immunized pso algorithm and its application to hammerstein model identification[C]// IEEE Congress on Evolutionary Computation, IEEE, 2009.
[25] Han Y. Block-oriented nonlinear system identification using semidenite programming[D]. University of California San Diego, 2012.
[26] 林琳. 基于PSO Hammerstein模型的PM2.5预报[D]. 宁波:宁波大学,2017.
[27] Chen R, Tsay R S . Nonlinear additive ARX models[J]. Journal of the American Statistical Association, 1993, 88(423):955-967.
[28] 王海峰. 非圆加工用高速高精度快速刀具进给系统的研究[D]. 上海:上海交通大学, 2006.
[29] 张武, 周荣双, 朱诚. 基于ARX模型的温室温度模拟[J]. 江苏农业学报, 2013, 29(1): 46-50.
ZHANG Wu, ZHOU Rong-shuang, ZHU Cheng. Greenhouse temperature simulation based on ARX model [J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(1): 46-50.
[30] 汪静姝,郭杰,竺长安. 基于理论建模和ARX模型的定位平台系统辨识[J]. 振动与冲击, 2013, 32(13): 66-69.
WANG Jing-shu, GUO Jie, ZHU Chang-an. System identification of a positioning stage based on theoretical modeling and an ARX model [J]. Journal of vibration and shock, 2013, 32(13):66-69.
[31] 金海薇. 基于ARX模型的齿轮箱建模方法[J]. 振动与冲击, 2011, 30(1): 230-233.
JIN Hai-wei. Gearbox modeling based on ARX model [J]. Journal of vibration and shock, 2011, 30(1):230-233.
[32] 郭峰. 基于模糊ARX模型的水泥回转窑预测控制算法研究[D]. 秦皇岛:燕山大学, 2012.
[33] 阮文杰. 基于状态相依ARX模型的预测控制在磁悬浮系统中的应用[D]. 长沙:中南大学, 2013.
[34] 田艳,王月婷,王胜春,等. 基于ARX模型的塔式起重机结构状态检测[J]. 起重运输机械, 2014(2):50-54.
TIAN Yan, WANG Yue-ting, WANG Sheng-chun, et al. Structural state detection of tower crane based on ARX model [J]. Hoisting and Conveying Machinery, 2014(2): 50-54.
[35] 李灿军,彭辉. ARX模型在液位控制系统中的应用研究[J]. 湖南广播电视大学学报, 2007(1):69-71.
LI Can-jun, PENG Hui, Modeling of the Liquid -lever Control System Using ARX Model [J]. Journal of Hunan Radio and Television University, 2007(1): 69-71.
[36] 商云龙,张奇,崔纳新,等. 基于AIC准则的锂离子电池变阶RC等效电路模型研究[J]. 电工技术学报, 2015, 30(17):55-62.
SHANG Yun-long, ZHANG Qi, CUI Na-xin, et al. Research on Variable-order RC Equivalent Circuit Model for Lithium-Ion Battery Based on the AIC Criterion [J]. Transactions of China Electrotechnical Society, 2015, 30(17): 55-62.
[37] Qi M, Zhang P G. An investigation of model selection criteria for neural network time series forecasting[J]. European Journal of Operational Research, 2001, 132(3):666-680.
[38] Akaike H. Autoregressive model fitting for control[J]. Annals of the Institute of Statistical Mathematics, 1971, 23(1):163-180.
[39] Bryant D, Krause P J. An Implementation of a Lightweight Argumentation Engine for Agent Applications[C]// European Conference on Logics in Artificial Intelligence, Springer-Verlag, 2006.
PDF(2173 KB)

366

Accesses

0

Citation

Detail

Sections
Recommended

/