JOURNAL OF VIBRATION AND SHOCK.
Cable is an essential force transmission component of the cable supported structures, and its cable force directly affects the service condition and lifespan of the structures. In general, for cable supported structures with locally rigid coupling, the cable strand vibration is independent and coupled. the vibration characteristics of the parallel strand cables are different from those of the single cable strand or the cables with good integrity. In order to effectively identify the tensions in the parallel strand cables with rigid couplings, Firstly, the model of multi-strand coupled system was established and the vibration equations of the system was derived, According to the vibration equations of the system, the parametric analysis of vibration characteristics was performed on the coupled system; Then, combined the filled function method and optimization theory, the identification algorithm for cable force of multi rigid couplings cable strands was constructed, the global identification of cable force was realized; Finally, the correctness and reliability of the algorithms were demonstrated by the experiment and finite element simulation. The results show that the rigid coupling ensures that each cable strand vibrates synchronously, the natural vibration frequencies of the parallel strand cables appear fractional frequency doubling, and there are local differences in the overall vibration modes; The cable force identification algorithm based on global optimization theory proposed in this paper exhibits low requirements for initial values, high calculation accuracy, and convergence efficiency, and can be extended to other parameter identification problems.