Frictional stress wave propagation and attenuation characteristics on the flank face of a high-efficiency milling cutter

ZHAO Peiyi, OUYANG Yijie, JIANG Bin, JIANG Yupeng

Journal of Vibration and Shock ›› 0

PDF(2802 KB)
PDF(2802 KB)
Journal of Vibration and Shock ›› 0

Frictional stress wave propagation and attenuation characteristics on the flank face of a high-efficiency milling cutter

  • ZHAO Peiyi,OUYANG Yijie,JIANG Bin,JIANG Yupeng
Author information +
History +

Abstract

During the high-efficiency milling, under the action of high-frequency and intermittent cutting loads, the contact angle and posture between the milling cutter and the workpiece change frequently, making the relative friction and stress waves generated at the tool-workpiece interface dynamically change, leading to difficulty in accurately identifying and predicting friction damage and wear life during high-efficiency milling. A dynamic contact relationship model between the milling cutter and the workpiece under the influence of cutter error and milling vibration was constructed. The frictional force on the flank face of the milling cutter tooth was solved. Based on the one-dimensional string theory, a solution method for calculating the propagation distance, change rate and attenuation rate of frictional stress wave on the flank face of the cutter tooth was proposed. The results show that the stress wave peak value and change rate are greater near the cutting edge. The attenuation process of frictional stress waves in high-efficiency milling cutters shows biased exponential attenuation. The correlation verification results of the stress wave calculation method show that the energy of the feature points on the flank face of the cutter teeth has a correlation of more than 0.8 with the experimental accumulated wear depth, verifying the accuracy of the model.

Key words

high efficiency milling cutters / flank face / friction / stress wave

Cite this article

Download Citations
ZHAO Peiyi, OUYANG Yijie, JIANG Bin, JIANG Yupeng. Frictional stress wave propagation and attenuation characteristics on the flank face of a high-efficiency milling cutter[J]. Journal of Vibration and Shock, 0

References

[1] 何建洪, 李林, 朱浩. 我国先进制造技术追赶中子领域与周期选择[J]. 科学学研究, 2022, 40(09): 1583-1597. HE Jianhong, LI Lin, ZHU Hao. Selection of Sub-technology Field and Technology Cycle Stage in Technology Catches up for China's Advanced Manufacturing Technology(AMT)[J]. Studies in Science of Science, 2022, 40(09): 1583-1597. [2] 袁向东, 伍占文, 林雨斌, 等. GFRP高效铣削工艺参数的优化研究[J]. 林业机械与木工设备, 2022, 50(07): 47-55. YUAN Xiangdong, WU Zhanwen, LIN Yubin, et al. Research on Optimization of GFRP High-efficiency Milling Process Parameters[J]. Forestry Machinery & Woodworking Equipment, 2022, 50(07): 47-55. [3] Kaltenbrunner T, Krückl H P, Schnalzger G, et al. Differences in Evolution of Temperature, Plastic Deformation and Wear in Milling Tools when Up-Milling and Down-Milling Ti6Al4V[J]. Journal of Manufacturing Processes, 2022, 77: 75-86. [4] 张翔宇, 路正惠, 彭振龙, 等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报, 2021, 57(05): 133-147. ZHANG Xiangyu, LU Zhenghui, PENG Zhenlong, et al. High Quality and Efficient Ultrasonic Vibration Cutting of Titanium Alloys[J]. Journal of Mechanical Engineering, 2021, 57(05): 133-147. [5] Guo H, Zhang Y, Zhu K. Interpretable Deep Learning Approach for Tool Wear Monitoring in High-Speed Milling[J]. Computers in Industry, 2022, 138: 103638. [6] Barzegar Z, Ozlu E. Analytical Prediction of Cutting Tool Temperature Distribution in Orthogonal Cutting Including Third Deformation Zone[J]. Journal of Manufacturing Processes, 2021, 67: 325-344. [7] 朱锟鹏, 李刚. 基于刀具磨损映射关系的微细铣削力理论建模与试验研究[J]. 机械工程学报, 2021, 57(19): 246-259. ZHU Kunpeng, LI Gang. Theoretical Modeling and Experimental Study of Micro Milling Force Based on Tool Wear Mapping[J]. Journal of Mechanical Engineering, 2021, 57(19): 246-259. [8] 吴石, 张轩瑞, 刘献礼. 基于CEEMD和GWO-SVR的铣削振动信号前瞻预测[J]. 振动与冲击, 2022, 41(11): 199-209, 234. WU Shi, ZHANG Xuanrui, LIU Xianli. Forward-looking prediction of milling vibration signal based on CEEMD and GWO-SVR[J]. Journal of Vibration and Shock, 2022, 41(11): 199-209, 234. [9] Hu Y, Li S, Deng X, et al. Correlation Analysis of Noise Sound Pressure and Vibration in Aluminum Alloy Milling[J]. Journal of Vibration and Control, 2022, 28(3-4): 276-289. [10] Guo M, Wang J, Guo W, et al. An Unformed Chip Thickness Approach to Study the Influence of Process Vibration on Machining Performance in Milling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(7): 5363-5375. [11] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005: 1-10. WANG Lili. Foundation of Stress Waves[M]. Beijing: National Defense Industry Press, 2005: 1-10. [12] 李建春, 范立峰, 李郑梁. 岩体中应力波传播规律研究方法进展[J]. 应用力学学报, 2022, 39(05): 845-858. LI Jianchun, FAN Lifeng, LI Zhengliang. Progress of methods for wave propagation across rock masses[J]. Chinese Journal of Applied Mechanics, 2022, 39(05): 845-858. [13] 王梦, 范立峰. 卸载效应对节理裂隙岩体内应力波能量耗散影响研究[J]. 应用力学学报, 2022, 39(05): 869-878. WANG Meng, FAN Lifeng. The influence of macrojoint unloading effect on the stress waves energy dissipation in rock masses with microdefects and macrojoints[J]. Chinese Journal of Applied Mechanics, 2022, 39(05): 869-878. [14] 李建春, 范立峰, 李郑梁. 岩体中应力波传播规律研究方法进展[J]. 应用力学学报, 2022, 39(05): 845-858. LI Jianchun, FAN Lifeng, LI Zhengliang. Progress of methods for wave propagation across rock masses[J]. Chinese Journal of Applied Mechanics, 2022, 39(05): 845-858. [15] 柴少波, 周涛, 田威, 等. 考虑岩体应力的结构面中应力波传播特性分析[J]. 岩土力学, 2022, 43(S1): 184-192. CHAI Shaobo, ZHOU Tao, TIAN Wei, et al. Analysis of stress wave propagation through a rock structural plane consideringrock mass stress[J]. Rock and Soil Mechanics, 2022, 43(S1): 184-192. [16] 李永祺, 梁正召, 钱希坤, 等. 应力波形对岩石爆生裂纹扩展机制影响的数值模拟[J]. 工程科学学报, 2022, 44(12): 2057-2068. LI Yongqi, LIANG Zhengzhao, QIAN Xikun, et al. Effect of stress waveform on the rock blasting crack propagation mechanism usingnumerical simulation[J]. Chinese Journal of Engineering, 2022, 44(12): 2057-2068. [17] 刘鑫, 许宏发, 范鹏贤, 等. 围压下岩石填充裂隙对应力波衰减规律的试验研究[J]. 岩土力学, 2021, 42(08): 2099-2108, 2119. LIU Xin, XU Hongfa, FAN Pengxian, et al. Experimental study on the stress wave attenuation effectof filled cracks in rocks under confining pressure[J]. Rock and Soil Mechanics, 2021, 42(08): 2099-2108, 2119. [18] Sara M, Vincenzo A. Laboratory-Scale Investigation of a Periodically Forced Stratified Basin with Inclined Endwalls[J]. Journal of Fluid Mechanics, 2022, 932. [19] Scaccabarozzi D, Saggin B. Measurement of Stress Waves Propagation in Percussive Drilling[J]. Sensors, 2021, 21(11): 3677. [20] Sriskantharajah B, Gad E, Bandara S, et al. Condition Assessment Tool for Timber Utility Poles Using Stress Wave Propagation Technique[J]. Nondestructive Testing and Evaluation, 2021, 36(3): 336-356. [21] Bandara S, Rajeev P, Gad E, et al. Damage Severity Estimation of Timber Poles Using Stress Wave Propagation and Wavelet Entropy Evolution[J]. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2021, 4(1): 011006-011019. [22] Majtenyi Steven I. Stress wave penetration into non-linear granular materials [J]. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2014, 167(2): 56-66. [23] Shokrollahi M, Eskandari-Ghadi M, Khaji N. A unified approach for stress wave propagation in transversely isotropic elastic and poroelastic layered media[J]. Soil dynamics and earthquake engineering, 2022(Jun.):157.
PDF(2802 KB)

Accesses

Citation

Detail

Sections
Recommended

/