基于小波包能量矩阵的轴承信号特征提取

齐俊德;李山;陈冰

振动与冲击 ›› 2013, Vol. 32 ›› Issue (21) : 107-111.

PDF(1148 KB)
PDF(1148 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (21) : 107-111.
论文

基于小波包能量矩阵的轴承信号特征提取

  • 齐俊德,李山,陈冰
作者信息 +

Feature extraction of bearing vibration signal based on wavelet energy matrix

  • QI Junde, LI Shan, CHEN Bing
Author information +
文章历史 +

摘要

为通过振动信号识别轴承的工作状态,结合小波包变换和矩阵特征值理论,提出了一种新的轴承信号特征提取方法。引入了能量值方法,对小波包分解信号进行分层分段能量计算,组成能量特征矩阵,求得矩阵特征值;定义基于特征值的振动信号特征参数,并探讨了特征参数与轴承运行状态间的联系。最后在特征提取基础上,提出了故障早期模式识别的对应系数相乘方法。结果表明:最大值特征参数能够敏感的反映轴承工作性能的变化,可作为轴承状态监测特征量;对应系数相乘法可以作为故障部位诊断的有效方法。

Abstract

In order to recognize the operating conditions of bearings,a new approach for extracting features of vibration signals was proposed using the theory of wavelet transform and matrix eigenvalues. The method of energy was introduced and calculated using segmented datas , then a energy matrix was built and the matrix eigenvalues were got. Characte ristic parameters were defined based on the matrix eigenvalues.The relationship between the characteristic parameters and the operating condition of bearing were discussed.At last, a method of early age fault diagnosis that makes the wavelet coefficients multiply was brought up on the basis of Feature extraction. It is shown that the max characteristic parameters proposed can sensitively reflect the working performance of bearings.Therefore it could be considered as a parameter to inspect the condition of of bearings.The multiply of wavelet coefficients can be an efficient method of fault diagnose.


关键词

故障诊断 / 能量矩阵 / 小波包变换 / 矩阵特征值 / 特征参数

Key words

fault diagnose / energy matrix / wavelet transform / matrix eigenvalues / characteristic parameters

引用本文

导出引用
齐俊德;李山;陈冰. 基于小波包能量矩阵的轴承信号特征提取[J]. 振动与冲击, 2013, 32(21): 107-111
QI Junde;LI Shan;CHEN Bing. Feature extraction of bearing vibration signal based on wavelet energy matrix[J]. Journal of Vibration and Shock, 2013, 32(21): 107-111

PDF(1148 KB)

Accesses

Citation

Detail

段落导航
相关文章

/