基于转速自适应多阶FRFT滤波提取瞬变工况齿轮微弱故障特征

李枫;梅检民;肖云魁;杨青乐;曾锐利

振动与冲击 ›› 2013, Vol. 32 ›› Issue (21) : 158-163.

PDF(2571 KB)
PDF(2571 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (21) : 158-163.
论文

基于转速自适应多阶FRFT滤波提取瞬变工况齿轮微弱故障特征

  • 李枫1, 梅检民1,2,肖云魁1,杨青乐1,曾锐利1
作者信息 +

Extraction of Fault Features Under Transient-Conditions Based on Self-Adaptive segmentation Multilevel Fractional Fourier Transform Filtering

  • Li feng 1, Mei Jian-min1, 2, Xiao Yun-kui1, Yang Qing-le1, Zeng Rui-li1
Author information +
文章历史 +

摘要

提出了一种基于转速信号自适应分段的多阶FRFT滤波方法,并应用于提取瞬变工况下变速器齿轮微弱故障特征。首先,根据设定的振动信号频率曲线曲率阈值将目标档位啮合频率时频曲线自适应分为若干段,使得每段内的信号频率近似线性变化;然后,在各分段内进行最小二乘拟合确定相应的FRFT最佳阶次,并在各段信号的最佳分数阶域进行滤波,实现基于转速自适应分段的多阶FRFT滤波。采用该方法分析实测变速器瞬变工况振动信号。结果表明,基于转速信号自适应分段确定多阶FRFT的最佳阶次,准确、快速、自适应性好;多阶FRFT滤波能够有效分离出瞬变工况下的啮合频率分量,隔离其他干扰;对分离出的啮合频率分量进行阶次包络解调分析,能有效提取出齿轮微弱故障特征。

Abstract

An method of multilevel Fractional Fourier Transform filtering with self-adaptive segmentation based on rotate speed signal is proposed and applied to extract fault features of gearbox under transient-conditions. Firstly, segmenting the time-frequency curve of gearbox in Target-gear adaptively according to the threshold curvature which was set in advance, so the frequency change in each segment presents linear approximation. Then, obtaining the best order of FRFT for each segment by least square fitting of the curve and analyzing the vibration signal by FRFT to filter the interference components and noise. The experimental results show that the best order of multilevel FRFT calculated by self-adaptive segmentation of rotate speed signal is accurate, quick and adaptive; The target order component under transient–conditions can be extracted by multilevel FRFT with best order effectively and isolates other interference; Fault features can be obtained by envelope demodulation of the extracted sole order component.


关键词

自适应分段 / 多阶FRFT滤波 / 瞬变工况 / 特征提取

Key words

Self-Adaptive segmentation / Multilevel FRFT Filter / Transient-Conditions / Feature extraction

引用本文

导出引用
李枫;梅检民;肖云魁;杨青乐;曾锐利. 基于转速自适应多阶FRFT滤波提取瞬变工况齿轮微弱故障特征[J]. 振动与冲击, 2013, 32(21): 158-163
Li feng;Mei Jian-min;;Xiao Yun-kui;Yang Qing-le;Zeng Rui-li. Extraction of Fault Features Under Transient-Conditions Based on Self-Adaptive segmentation Multilevel Fractional Fourier Transform Filtering[J]. Journal of Vibration and Shock, 2013, 32(21): 158-163

PDF(2571 KB)

Accesses

Citation

Detail

段落导航
相关文章

/