基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法

张 亢;程军圣;杨 宇

振动与冲击 ›› 2013, Vol. 32 ›› Issue (9) : 90-94.

PDF(1384 KB)
PDF(1384 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (9) : 90-94.
论文

基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法

  • 张 亢,程军圣,杨 宇
作者信息 +

A roller bearing fault diagnosis method based on local mean decomposition and morphological fractal dimension

  • ZHANG Kang,CHENG Jun-sheng,YANG Yu
Author information +
文章历史 +

摘要

针对滚动轴承振动信号通常具有非线性与低信噪比特点,提出基于局部均值分解(Local Mean Decomposition,LMD)与形态学分形维数的滚动轴承故障诊断方法。采用LMD将滚动轴承振动信号分解为若干个乘积函数(Product Function,PF)分量,计算包含有滚动轴承故障特征的PF分量形态学分形维数,并将其用作特征量判断滚动轴承工作状态及故障类型。实验分析结果表明,该方法能有效用于滚动轴承的故障诊断。

Abstract

The roller bearing vibration signals usually have the characteristics including nonlinearity and low signal to noise ratio. In view of this problem, a roller bearing fault diagnosis method based on local mean decomposition (LMD) and morphological fractal dimension is proposed. In this method, firstly, the roller bearing vibration signal is decomposed into a set of product functions (PFs) by LMD, and then the morphological fractal dimension of PF which contain the roller bearing fault characteristics is calculated, and it as the characteristic parameter to judging the roller bearing working conditions and fault types. The analytical results from the experimental roller bearing vibration signals indicate that this method can be applied to the roller bearing fault diagnosis effectively.

关键词

局部均值分解 / 形态学 / 分形维数 / 滚动轴承 / 故障诊断

Key words

Local mean decomposition / Morphology / Fractal dimension / Roller bearing / Fault diagnosis

引用本文

导出引用
张 亢;程军圣;杨 宇. 基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法[J]. 振动与冲击, 2013, 32(9): 90-94
ZHANG Kang;CHENG Jun-sheng;YANG Yu. A roller bearing fault diagnosis method based on local mean decomposition and morphological fractal dimension[J]. Journal of Vibration and Shock, 2013, 32(9): 90-94

PDF(1384 KB)

Accesses

Citation

Detail

段落导航
相关文章

/