基于CAE和AGRU的滚动轴承退化趋势预测

焦玲玲1,陈捷1,2,刘连华1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 109-117.

PDF(2056 KB)
PDF(2056 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 109-117.
论文

基于CAE和AGRU的滚动轴承退化趋势预测

  • 焦玲玲1,陈捷1,2,刘连华1
作者信息 +

Degradation trend prediction of rolling bearings based on CAE and AGRU

  • JIAO Lingling1,CHEN Jie1,2,LIU Lianhua1
Author information +
文章历史 +

摘要

针对旋转机械中滚动轴承退化趋势预测存在健康指标构建依赖先验知识,预测精度低等问题,提出了基于卷积自编码器(convolutional auto-encodes,CAE)和融合注意力机制的门控循环单元(attention gated recurrent unit,AGRU)的滚动轴承退化趋势预测方法。首先,该方法通过快速傅里叶变换(fast fourier transform,FFT)将滚动轴承时域信号转换为频域信号,卷积自编码器从频域信号中自适应提取特征,编码特征通过评估选择构建健康指标(health indicators,HI),在此基础上,将健康指标输入融入注意力的门控循环单元网络(gate recurrent unit,GRU)模型,剪枝算法对模型参数进行优化,完成了滚动轴承性能退化趋势预测。结果表明,所提的方法能获得更准确的滚动轴承退化趋势预测。

Abstract

Aiming at problems of health indictor construction depending on prior knowledge and prediction accuracy being low for rolling bearing performance degradation trend prediction method in rotating machinery, a prediction method for rolling bearing degradation trend based on convolutional auto-encodes(CAE) and attention gated recurrent unit(AGRU) was proposed.Firstly, the method converted the rolling bearing time domain signal into frequency domain signal with fast fourier transform(FFT), and the features were extracted adaptively from frequency domain signal with convolutional auto-encodes.Then, the health indicators werw constructed from encoding features with evaluating and delsting. Finally the health indicators were input into the attention gated recurrent unit mode, and the pruning algorithm optimized the parameters to predict the performance degradation trend of rolling bearings. Results showed that the proposed method can obtain more accurate prediction results for rolling bearing performance degradation trend.

关键词

滚动轴承 / 退化趋势预测 / 卷积自编码器(CAE) / 门控循环单元(GRU) / 注意力机制

Key words

rolling bearing / degradation trend prediction / convolutional auto-encoders(CAE) / gated recurrent unit(GRU) / attention mechanism

引用本文

导出引用
焦玲玲1,陈捷1,2,刘连华1. 基于CAE和AGRU的滚动轴承退化趋势预测[J]. 振动与冲击, 2023, 42(12): 109-117
JIAO Lingling1,CHEN Jie1,2,LIU Lianhua1. Degradation trend prediction of rolling bearings based on CAE and AGRU[J]. Journal of Vibration and Shock, 2023, 42(12): 109-117

参考文献

[1] LEI Y G,  LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.
[2] GUO L, LEI Y G, LI N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr[J]. Neurocomputing, 2018, 292:  142-150.
[3] XU F, HUANG Z L, YANG F F, et al. Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion[J]. Applied Soft Computing, 2020, 89: 106119.
[4] DING N, LI H, YIN Z W, et al. Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network[J]. Measurement, 2020, 166: 108-215.
[5] 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39(06):  82-88.
ZHAO Guangquan, LIU Xiaoyong, JIANG Zedong et al. Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39(06): 82-88.
[6] CHEN L T, XU G H, ZHANG S, et al. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks[J]. Manuf Syst, 2020, 54: 1–11.
[7] 肖婷, 汤宝平, 秦毅, 等. 基于流形学习和最小二乘支持向量机的滚动轴承退化趋势预测[J]. 振动与冲击, 2015, 34(09): 149-153.
XIAO Ting, TANG Baoping, QING Yi, et al. Degradation trend prediction of rolling bearing based on manifold learning and least squares support vector machine[J]. Journal of Vibration and shock, 2015, 34(09): 149-153.
[8] CHEN Z H, WU M, ZHAO R, et al. Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 21-31.
[9] GAO S H, XIONG X, ZHOU Y F, et al. Bearing Remaining Useful Life Prediction Based on a Scaled Health Indicator and a LSTM Model with Attention Mechanism[J]. Machines, 2021, 9(10): 238-263.
[10] WU J Y, WU M, CHEN Z, et al. Degradation-Aware Remaining Useful Life Prediction With LSTM Autoencoder[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
[11] 陈浩. 基于深度学习的直升机关键部件故障预测方法研究[D]. 长沙: 国防科技大学, 2019.
[12] 曾大懿, 蒋雨良, 邹益胜, 等. 一种新的轴承寿命预测特征评价指标构建与验证[J]. 振动与冲击, 2021, 40(22): 18-27.
ZENG Dayi, JIANG Yuliang, ZOU Yisheng, et al. Construction and verification of a new evaluation index for bearing life prediction characteristics[J]. Journal of Vibration and shock, 2021, 40(22): 18-27.
[13] GUO R, WANG Y, ZHANG H, et al. Remaining Useful Life Prediction for Rolling Bearings Using EMD-RISI-LSTM[J]. IEEE Transactions on Instrumentation and Measurement, 2021: 1-12.
[14] 王鹏, 邓蕾, 汤宝平, 等. 基于自编码器和门限循环单元神经网络的滚动轴承退化趋势预测[J]. 振动与冲击, 2020, 39(17): 106-111+133.
WANG Peng, DENG Lei, TANG Baoping, et al. Degradation trend prediction of rolling bearing based on auto-encoder and GRU neural network[J]. Journal of Vibration and shock, 2020, 39(17): 106-111+133.
[15] CHEN Y H, PENG G L, ZHU Z Y, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing, 2020, 86: 105919.
[16] XIA J, FENG Y W, LU C, et al. LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems[J]. Engineering Failure Analysis, 2021, 125: 105385.
[17] 赵志宏, 李晴, 杨绍普, 等. 基于BiLSTM与注意力机制的剩余使用寿命预测研究[J]. 振动与冲击, 2022, 41(06): 44-50+196.
ZHAO Zhihong, LI Qing, YANG Shaopu, et al. Remaining useful life prediction based on BiLSTM and attention mechanism[J]. Journal of Vibration and shock, 2022, 44(06): 44-50+196.
[18] 姚德臣, 李博阳, 刘恒畅, 等. 基于注意力GRU算法的滚动轴承剩余寿命预测[J]. 振动与冲击, 2021, 40(17): 116-123.
YAO Dechen, LI Boyang, LIU Hengchang, et al. Residual life prediction of rolling bearing based on attention GRU algorithm[J]. Journal of Vibration and shock, 2021, 40(17): 116-123.
[19] Rai A, Upadhyay S H. The Use of MD-CUMSUM and NARX Neural Network for Anticipating the Remaining Useful Life of Bearings[J]. Measurement, 2017, 111:   397-410.
[20] TIAN Q P, WANG H L. An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction[J]. Applied Sciences, 2020, 10(1): 346-367.
[21] WANG P, LONG Z Q, WANG G. A hybrid prognostics approach for estimating remaining useful life of wind turbine bearings[J]. Energy Reports, 2020, 6: 173-182.
[22] 张典震, 陈捷, 王华, 等. 基于卷积自编码与密集时间卷积网络的回转支承退化趋势预测[J]. 振动与冲击, 2021, 40(23): 9-16.
ZHANG Dianzhen, CHEN Jie, WANG Hua, et al. Prediction of slewing support degradation trend based on CAE and DTCN[J]. Journal of Vibration and shock, 2021, 40(23):   9-16.

PDF(2056 KB)

331

Accesses

0

Citation

Detail

段落导航
相关文章

/