软硬介质组合岩体冲击动力学特性研究

王雁冰1,2,任斌1,耿延杰1,李正宽1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 135-144.

PDF(3264 KB)
PDF(3264 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 135-144.
论文

软硬介质组合岩体冲击动力学特性研究

  • 王雁冰1,2,任斌1,耿延杰1,李正宽1
作者信息 +

A study on impact dynamic characteristics of soft and hard medium combined rock mass

  • WANG Yanbing1,2,REN Bin1,GENG Yanjie1,LI Zhengkuan1
Author information +
文章历史 +

摘要

为探究破岩和支护工程中较为常见的软硬介质组合岩体的冲击动力学特性,采用普氏系数差别较大的花岗岩和砂岩拼接成软硬介质和单介质组合岩体,利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)试验系统,分别对组合岩体进行冲击压缩试验,对比分析应力波入软硬介质和单介质组合岩体的波动特性、峰值强度以及利用高速相机记录组合岩体裂纹扩展形态。通过离散格子弹簧法(discrete lattice spring method,DLSM)数值模拟进行全方位的反演分析,研究软硬介质组合岩体胶结面两侧岩石的应力时程曲线变化规律,并利用“软硬组合系数”表征软硬介质组合岩体损伤演化规律。研究结果表明:组合岩体的波动特性具有明显的波阻抗效应,组合体和入射杆波阻抗匹配效果越好,反射波幅值越小,透射波幅值越大。相同冲击速度下,软硬介质组合岩体的峰值强度与单介质软岩组合体的峰值强度较为接近;软硬介质组合岩体和单介质组合岩体破坏程度和破坏形式明显不同:软硬介质组合岩体裂纹首先出现在远离胶结面的砂岩端部,而单介质组合岩体裂纹首先出现在胶结面处。单介质组合岩体以剪切破坏为主,局部张拉破坏为辅,破坏较为彻底。软硬介质组合岩体中较软的砂岩发生剪切破坏,而较硬的花岗岩没有明显破坏。软硬介质组合岩体胶结面两侧岩石应力随着时间变化呈现上升-下降-上升-下降的反复现象。而单介质组合岩体胶结面两侧岩石在到达应力峰值后,随即应力开始下降,未出现应力反复现象。软硬介质组合岩体的损伤度D与软硬组合系数γ呈二次函数关系:D=-0.21γ2+0.69γ+0.06。

Abstract

In order to explore the impact dynamic characteristics of soft and hard media composite rock mass, which is common in rock breaking and supporting engineering, granite and sandstone with large difference in protodeacon coefficient are used to splice into soft and hard media and single media composite rock mass. The split Hopkinson pressure bar (SHPB) test system is used to carry out the impact compression test of composite rock mass, respectively. The fluctuation characteristics, peak strength of stress wave into soft and hard media and single media composite rock mass are compared and analyzed, and the crack propagation morphology of composite rock mass is recorded by high-speed camera. Through the numerical simulation of discrete lattice spring method (DLSM), a comprehensive inversion analysis is carried out to study the variation law of stress time history curve of rock on both sides of cemented surface of soft and hard medium composite rock mass, and the ' soft and hard combination coefficient ' is used to characterize the damage evolution law of soft and hard medium composite rock mass. The results show that the wave characteristics of composite rock mass have obvious wave impedance effect. The better the wave impedance matching effect between composite rock mass and incident rod, the smaller the amplitude of reflected wave and the larger the amplitude of transmitted wave. At the same impact velocity, the peak strength of soft-hard rock mass is close to that of single medium soft rock mass. The failure degree and failure mode of soft-hard medium composite rock mass are obviously different from that of single medium composite rock mass. The crack of soft-hard medium composite rock mass first occurs at the end of sandstone far from the cementation surface, while the crack of single medium composite rock mass first occurs at the cementation surface. The single medium composite rock mass is mainly shear failure, supplemented by local tensile failure, and the failure is more complete. The soft sandstone in the soft-hard rock mass has shear failure, while the hard granite has no obvious damage. The rock stress on both sides of the cementation surface of the soft-hard medium combination rock mass presents a repeated phenomenon of rise-decrease-rise-decrease with time. The stress of the rock on both sides of the cemented surface of the single medium composite rock mass begins to decrease after reaching the peak stress, and there is no stress recurrence. The damage degree D of rock mass composed of soft and hard media is quadratically related to the coefficient γ of soft and hard media: D=-0.85γ2+2.80γ.

关键词

组合岩体 / 分离式霍普金森压杆(SHPB) / 离散格子弹簧法(DLSM) / 裂纹扩展

Key words

Composite rock mass / SHPB / DLSM / Crack propagation

引用本文

导出引用
王雁冰1,2,任斌1,耿延杰1,李正宽1. 软硬介质组合岩体冲击动力学特性研究[J]. 振动与冲击, 2023, 42(12): 135-144
WANG Yanbing1,2,REN Bin1,GENG Yanjie1,LI Zhengkuan1. A study on impact dynamic characteristics of soft and hard medium combined rock mass[J]. Journal of Vibration and Shock, 2023, 42(12): 135-144

参考文献

[1] 鲜学福,谭学术.层状岩体破坏机理[M]. 重庆:重庆大学出版社,1989:63–66.
XIAN Xue-fu, TAN Xue-shu. Failure mechanism of layered rock mass [M]. Chongqing: Chongqing University Press, 1989: 63–66.
[2] J. C. JAEGER. Shear Failure of Anistropic Rocks [J]. Geological Magazine, 1960, 97(1): 65-72.
[3] DONG Q, LI X, HUANG J. Model test study on cylindrical blasting stress wave propagation across jointed rock mass with different initial stresses [J]. Advances in Civil Engineering, 2020, 40(1): 1-13.
[4] 李成武,王金贵,解北京,等. 基于HJC本构模型的煤岩SHPB实验数值模拟[J]. 采矿与安全工程学报,2016,33(01):158-164.
LI Cheng-wu, WANG Jin-gui, XIE Bei-jing, etc. Numerical simulation of SHPB test for coal by using HJC model [J].Journal of Mining and Safety Engineering, 2016, 33(01): 158-164.
[5] 杨建群,金小华,吴雯雯,等. 水平层状岩体隧道爆破施工对临近隧道影响的DLSM模拟分析[J]. 江西理工大学学报,2018,39(03): 12-17.
YANG Jian-qun, JIN Xiao-hua, WU Wen-wen, etc. DLSM simulation analysis of the influence of blasting construction on adjacent tunnels in horizontal layered rock mass [J]. Journal of Jiangxi University of Technology, 2018, 39(03): 12-17.
[6] 杨仁树,李炜煜,方士正,等. 层状复合岩体冲击动力学特性试验研究[J]. 岩石力学与工程学报,2019,38(09): 1747-1757.
YANG Ren-shu, LI Wei-yu, FANG Shi-zheng, etc. Experimental study on impact dynamic characteristics of layered composite rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(09): 1747-1757.
[7] 鞠杨,李业学,谢和平,等. 节理岩石的应力波动和能量耗散[J]. 岩石力学与工程学报,2006,25(12): 2426-2434.
JU Yang, LI Ye-xue, XIE He-ping, etc. Stress fluctuation and energy dissipation of jointed rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2426-2434.
[8] 董永香,黄晨光,段祝平. 多层介质对应力波传播特性影响分析[J]. 高压物理学报,2005,19(1): 59-65.
DONG Yong-xiang, HUANG Chen-guang, DUAN Zhu-ping. Analysis of influence of multilayer medium on stress wave propagation characteristics [J]. Chinese Journal of High Press Physics, 2005, 19(1): 59-65.
[9] LI D Y, HAN Z, ZHU Q, etc. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 162–170.
[10] 周辉,宋明,张传庆,等. 水平层状复合岩体变形破坏特征的围压效应研究[J]. 岩土力学,2019,40(2):465–473.ZHOU Hui, SONG Ming, ZHANG Chuan-qing, etc. Effect of confining pressure on mechanical properties of horizontal layered composite rock [J]. Rock and Soil Mechanics, 2019, 40(2): 465–473.
[11] 腾俊洋,唐建新,王进博,等. 层状复合岩体损伤演化规律及分形特征[J]. 岩石力学与工程学报,2018,37(增 1):3263–3278.
TENG Jun-yang, TANG Jian-xin, WANG Jin-bo, etc. The evolution law of the damage of bedded composite rock and its fractal characteristics [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Supp.1): 3263–3278.
[12] 岳中文,宋 耀,陈 彪,等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究[J]. 振动与冲击,2017,36(12): 223–229.
YUE Zhong-wen, SONG Yao, CHEN Biao, etc. A study on the behaviors of dynamic fracture in layered rocks under impact loading [J]. Journal of Vibration and Shock, 2017, 36(12): 223–229.
[13] DAI F, HUANG S, XIA K W, etc. Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6), 657-666.
[14] WANG L M, ZHAO A, HUA A Z, etc. Research on SHPB testing technique for brittle material [J]. Chinese Journal of Rock Mechanics and Engineering,2003, 22(11): 1789-1802.
[15] TAO J L, TIAN C J, CHEN Y Z, etc. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413-418.
[16] 卢芳云,陈玉亮,等. 霍普金森杆实验技术[M]. 北京:科学出版社,2013.
LU Fang-yun, CHEN Yu-liang, etc. Hopkinson Bar experimental technology [M]. Beijing: Science Press, 2013.
[17] 毕京九. 被动围压条件下含层理页岩循环冲击试验研究[D]. 中国矿业大学(北京),2020.
BI Jing-jiu. Experimental study on cyclic impact of bedding shale under passive confining pressure [D]. China University of mining and Technology (Beijing), 2020.
[18] 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005(03): 207-216.
SONG Li, HU Shi-sheng. Uniformity and constant strain rate in SHPB test [J]. Explosion and shock, 2005(03): 207-216.
[19] 赵高峰,乔磊,张玉良,等. 适用于非均质岩石破坏模拟的偏心四维弹簧模型[J]. 清华大学学报(自然科学版),2021,61(8):818-826.
ZHAO Gao-feng, QIAO Lei, ZHANG Yu-liang, etc. An eccentric four-dimensional spring model for failure simulation of heterogeneous rock [J]. Journal of tsinghua university (science and technology), 2021, 61(8): 818-826.
[20] 赵高峰,孙建华,李世金,等. 超高应变率下岩石的破坏机理[J]. 土木与环境工程学报,2021,43(01):11-24.
ZHAO Gao-feng, SUN Jian-hua, LI Shi-jin, etc. Failure mechanism of rock under ultra-high strain rate [J]. Journal of civil and environmental engineering, 2021, 43(01): 11-24.[21] 赵高峰,徐志超,郝益民,等. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治,2021,3(03): 11-19.
ZHAO Gao-feng, XU Zhi-chao, HAO Yi-min, etc. Study on blasting vibration and damage determination of tunnel surrounding rock based on 4D-LSM [J]. Disaster prevention and control of tunnel and underground engineering, 2021, 3(03): 11-19.
[22] Zhao G F. Development of micro-macro continuum-discontinuum coupled numerical method [D]. PhD thesis, Ecole Polytechnique federal de Lausanne, Switzerland, 2010.
[23] Zhao G F, Fang J, Zhao J A. 3D distinct lattice spring model for elasticity and dynamic failure [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35: 859-885.
[24]王雁冰.爆炸的动静作用破岩与动态裂纹扩展机理研究[D]. 中国矿业大学(北京), 2016.
WANG Yan-bing. Study on the mechanism of rock breaking and dynamic crack propagation under the dynamic and static action of explosion [D]. China Universityof mining and Technology (Beijing), 2016.

PDF(3264 KB)

Accesses

Citation

Detail

段落导航
相关文章

/