液体火箭发动机涡轮泵振动信号在变工况情况下表现出非平稳和强噪声特性,为特征频率分量提取带来困难。针对该问题,首先,提出二阶多重同步挤压变换(Second-order Multisynchrosqueezing Transform, SMSST)时频分析方法,完成了数学推导并证明了其收敛性。在此基础上,提出基于自适应带通滤波与脊线提取的转频分量提取方法。用仿真信号对SMSST方进行验证并与传统方法比较。最后,将基于SMSST的转频特征提取方法应用于发动机转速辨识和故障诊断,并用实际数据进行验证。结果表明,与传统时频分析方法相比,SMSST具有更高的时频分析精度。本文提出的方法可以提供有效、可靠、冗余的转速测量手段,并且该方法可以支撑故障早期预警。
Abstract
Vibration signals of a liquid rocket engine represent nonstationarity and strong noise, which brings difficulties in characteristic frequency component extraction. In order to solve the problem, a time-frequency analysis method called Second-order Multisynchrosqueezing Transform(SMSST)was proposed. The mathematical derivation of this method and the proof of its convergency was completed. Then a rotation frequency component extraction method based on adaptive band filtering and ridge extraction was presented. The SMSST was compared to traditional time-frequency analysis methods using generated signal. finally the SMSST-based rotation frequency component extraction method was applied with actual data in rotation speed identification and fault diagnosis . Result shows that the SMSST has better accuracy in time-frequency analysis compared with traditional methods. The method proposed provides an effective, reliable, redundant way to measure rotation speed. And the method is able to support fault early warning.
关键词
同步挤压变换 /
脊线提取;转速辨识 /
液体火箭发动机 /
涡轮泵
{{custom_keyword}} /
Key words
synchrosqueezing transform /
ridge extraction /
rotation speed estimation /
liquid rocket engine /
turbopump
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. 洪涛. 液体火箭发动机涡轮泵实时故障检测算法研究[D]. 四川: 电子科技大学.
HONG Tao. Study on Real-time Fault Detection Algorithm For Liquid-propellant Rocket Engine Turbo pump[D]. Xi'an: University of Electronic Science and Technology of China, 2012.
[2]. 谢光军. 液体火箭发动机涡轮泵实时故障检测技术及系统研究[D]. 长沙: 国防科技大学, 2006.
XIE Guang-jun. Research on Real-time Fault Detection Technology and System for Liquid Rocket Engine Turbopump. [D]. Changsha: National University of Defense Technology, 2006.
[3]. Jacek Urbanek, Tomasz Barszcz, JeromeAntoni. A two-step procedure for estimation of instantaneous rotational speed with large fluctuations[J]. Mechanical Systems and Signal Processing, 2013, 38: 96-102.
[4]. Fiorucci T R, Lakin D R, Reynolds T D. Advanced Engine Health Management Applications of the SSME Real-time Vibration Monitoring System[R]. AIAA 2000-3622, 2000.
[5]. 刘英元, 陈海峰, 耿直, 等. 液体火箭发动机振动故障特征信号提取方法[J]. 火箭推进, 2019, 45(1): 77-82.
LIU Ying-yuan, CHEN Hai-feng, GENG Zhi. Extraction Method of Characteristic Signal for Vibration Fault of Liquid Rocket Engine[J]. Journal of Rocket Propulsion, 2019, 45(1): 77-82.
[6]. I. Daubechies, J. Lu, H. T. Wu. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261.
[7]. 于刚. 挖掘机振声信号时频分析硏究与应用[D]. 山东: 山东大学, 2016.
[8]. Guan, Y., Liang, M., and Necsulescu, D. S.. A velocitysynchrosqueezing transform for fault diagnosis of planetary gearboxes under nonstationary conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016.
[9]. Duong Hung Pham, Sylvain Meignen. High-Order Synchrosqueezing Transform for Multicomponent Signals Analysis - With an Application to Gravitational-Wave Signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168-3178.
[10]. Gang YU , Zhonghua WANG, and Ping ZHAO. Multisynchrosqueezing Transform[J]. IEEE Transactions on Industrial Electronics, 2016, 66(7): 5441-5455.
[11]. FENG Z P, CHEN X W, LIANG M. Iterative Generalized Synchrosqueezing Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions[J]. Mechanical Systems and Signal Processing, 2015, 52: 360-375.
[12]. 石娟娟, 花泽晖, 沈长青. 广义瞬时速度同步化分步解调变换及其对旋转机械振动信号分析[J]. 振动与冲击, 2021,40(24): 1-11.
SHI Juanjuan,HUA Zehui,SHEN Changqing. A generalized instantaneous-frequency-estimation-free stepwise demodulation transform and its application in vibration signal analysis of rotating machinery[J]. Journal of Vibration and Shock, 2021,40(24): 1-11.
[13]. Gang YU. A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals[J]. Journal of Sound and Vibration, 2020.
[14]. Thomas Oberlin, Sylvain Meignen, Valérie Perrier. Second-Order Synchrosqueezing Transform or Invertible Reassignment? Towards Ideal Time-Frequency Representations[J]. IEEE Transactions On Signal Processing, 2015, 63(5): 1335-1344.
[15]. Jérôme Antoni , Julien Griffaton, Hugo André, et al. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine[J]. Mechanical Systems and Signal Processing, 2017.
[16]. Wenjie Bao, Fucai Li, Xiaotong Tu. Second-Order Synchroextracting Transform With Application to Fault Diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}