基础激励下磁悬浮转子-隔振器系统振动抑制研究

张一博,周瑾,沈权,张越,金超武

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 152-163.

PDF(3823 KB)
PDF(3823 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 152-163.
论文

基础激励下磁悬浮转子-隔振器系统振动抑制研究

  • 张一博,周瑾,沈权,张越,金超武
作者信息 +

A study on vibration control of active magnetic rotor-isolator system under base excitation

  • ZHANG Yibo,ZHOU Jin,SHEN Quan,ZHANG Yue,JIN Chaowu
Author information +
文章历史 +

摘要

磁悬浮轴承对基础激励抑制能力有限,当基础激励导致转子振动大于其悬浮间隙时,磁悬浮轴承系统转定子间会产生碰摩损伤以致设备损坏。针对上述问题,提出了结合隔振器和磁悬浮轴承主动控制器的基础激励抑振方法。在建立基础激励下磁悬浮转子模型的基础上,进一步考虑隔振器、基础、磁悬浮轴承定子相互耦合作用,以广义力形式将三者耦合关系转移到磁悬浮转子系统方程的刚度、阻尼矩阵中,建立了磁悬浮转子-隔振器耦合系统机电一体化模型。根据耦合模型分析不同简谐激励下隔振器设计参数变化对转子振幅的影响,并基于转子振幅变化规律,以隔振器最大变形、最大加速度、转定子间隙为设计目标,推导出合适的隔振器刚度范围。结合隔振器-高刚度主动控制器的耦合抑振作用,从理论和试验分析了耦合系统对基础激励的抑振效果。结果表明,与没有隔振器作用的磁悬浮转子系统相比,采用隔振器-高刚度控制器耦合控制可将转子最大振幅从0.052mm降低到0.011mm以内,转子整体振幅小于保护间隙(0.125mm)的10%。

Abstract

Active Magnetic Bearing (AMB) has limited ability to suppress the base excitation. When the vibration of the rotor caused by the base excitation is greater than its suspension gap, the rubbing damage between the rotor and stator of the magnetic bearing system will occur, resulting in equipment damage. In view of the above problems, the base excitation vibration suppression method combining the isolator and the active controller of magnetic bearing is proposed. On the basis of establishing the magnetic bearing rotor model under the base excitation, further considering the mutual coupling effect of vibration isolator, base and magnetic suspension bearing stator, the coupling relationship of the three is transferred to the stiffness and damping matrix of the magnetic rotor system equation in the form of generalized force, and the electromechanical integration model of the magnetic suspension rotor-vibration isolator coupling system is established. According to the coupling model, the influence of vibration isolator design parameters on rotor amplitude under different harmonic excitations is analyzed. Based on the variation of rotor amplitude, the maximum deformation, maximum acceleration and rotor stator clearance of vibration isolator are taken as the design objectives, and the appropriate stiffness range of vibration isolator is derived. Combined with the coupling vibration suppression effect of isolator-high stiffness active controller, the vibration suppression effect of the coupling system on the base excitation is analyzed theoretically and experimentally. The results show that compared with the magnetic suspension rotor system without isolator, the maximum amplitude of the rotor can be reduced from 0.052 mm to 0.011 mm by using isolator-high stiffness controller coupling control, and the overall amplitude of the rotor is less than 10 % of the protection gap (0.125 mm).

关键词

磁悬浮轴承 / 转子动力学 / 基础激励 / 隔振器 / 振动控制

Key words

active magnetic bearing / rotor dynamics / base excitation / isolator / vibration control

引用本文

导出引用
张一博,周瑾,沈权,张越,金超武. 基础激励下磁悬浮转子-隔振器系统振动抑制研究[J]. 振动与冲击, 2023, 42(12): 152-163
ZHANG Yibo,ZHOU Jin,SHEN Quan,ZHANG Yue,JIN Chaowu. A study on vibration control of active magnetic rotor-isolator system under base excitation[J]. Journal of Vibration and Shock, 2023, 42(12): 152-163

参考文献

[1] Maslen E H, Schweitzer G. Magnetic Bearings: theory, Design, and Application to Rotating Machinery[M], New York, NUSA, Springer, 2009.
[2] Siva Srinivas R, Tiwari R, Kannababu C. Application of active magnetic bearings in flexible rotor dynamic systems-a state of the art review[J]. Mechanical Systems and Signal Processing, 2018, 106:527-537.
[3] 胡业发,周祖德,江征风.磁力轴承的基础理论及应用[M].北京:机械工业出版社,2006.
Hu Yefa, Zhou Zude, Jiang Zhengfeng. Basic Theory and Application of Magnetic Bearing[M].Beijing:China Machine Press,2006.
[4] 金超武,董岳,苏浩,等. 磁悬浮轴承转子热弯曲振动特性研究[J]. 振动与冲击,2022, 41(4):12.
Jin C, Dong Y, Su H, et al. Characteristics of thermal-bow vibration in an active magnetic bearing supported rotor[J] Journal of Vibration and Shock,2022, 41(4):12.
[5] 刘文江.欠驱动水面船舶航向、航迹非线性鲁棒控制研究[D]. 济南:山东大学,2012.
Liu Wenjiang. Nonlinear Robust Control Study on Course and Track for Underactuated Marine Surface Vessels[D]. Jinan: Shandong University, 2012.
[6] 赵元松,贺少华,吴新跃.舰船旋转机械基础冲击动力学理论与实验研究[J].船舶力学,2014,18(08):1005-1012.
Zhao Yuansong, He Shaohua, Wu Xinyue. Experimental verification for modeling of rotating machinery under base-transferred shock excitations[J]. Journal of Ship Mechanics, 2014, 18(08):1005-1012.
[7] 张磊,裴世源,徐华.摇摆工况下两种舰船转子轴承系统的安全性与稳定性研究[J].中国科学:技术科学,2018,48(04):369-381.
Zhang Lei, Pei Shiyuan, Xu Hua. Safety and stability of two kinds of ship rotor bearing system under rolling condition[J]. SCIENTIA SINICA Technologica, 2018,48(04):369-381.
[8] M. Dakel, S. Baguet, R. Dufour. Steady-state dynamic behavior of an on-board rotor under combined base motions[J]. Journal of Vibration and Control, 2014, 20(15):2254–2287.
[9] Xi C, Liao M. Steady-State Characteristics of a Dual-Rotor System With Intershaft Bearing Subjected to Mass Unbalance and Base Motions[C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. 2018.
[10] Maruyama Y, Mizuno T, Takasaki M, et al. Study on Control System for Active Magnetic Bearing Considering Motions of Stator[J]. Journal of System Design and Dynamics, 2009, 3 : 954-¬965.
[11] Cole M O, Keogh P S, Burrows C R. Vibration control of a flexible rotor/magnetic bearing system subject to direct forcing and base motion disturbances[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 212(7): 535-¬546.
[12] 陈润田,祝长生. 基础平动激励下的电磁轴承柔性转子系统振动控制研究[J]. 机电工程,2021,38(6):8.
Chen Runtian, Zhu Changsheng. Vibration control of active magnetic bearing-flexible rotor system under base translational excitation[J]. Journal of Mechanical and Eletrical Engineering. 2021,38(6):8.
[13] 宋腾,韩邦成,郑世强,冯锐. 基于最小位移的磁悬浮转子变极性LMS反馈不平衡补偿[J]. 振动与冲击,2015, 000(007):24-32.
Song T, Han B, Zheng S, et al. Variable Polarity LMS Feedback Based on Displace Nulling to Compensate Unbalance of Magnetic Bearing, Journal of Vibration and Shock, 2015, 000(007):24-32.
[14] Ginzinger L, Ulbrich H. Control of a rubbing rotor using an active auxiliary bearing[J]. Journal of Mechanical Science and Technology, 2007, 21(6): 851¬-854
[15] Keogh P S, Lusty C, Bailey N Y. Nonlinear dynamics and control of rotors operating within the clearance of magnetic bearing systems[C]. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. 2017.
[16] Y Su,  Y Gu, Keogh P S, et al. Nonlinear dynamic simulation and parametric analysis of a rotor-AMB-TDB system experiencing strong base shock excitations[J]. Mechanism and Machine Theory, 2021, 155:104071.
[17] Hawkins L, Murphy B, Zierer J, et al. Shock and vibration testing of an amb supported energy storage flywheel[J]. JSME International Journal Series C Mechanical System, Machine Elements and Manufacturing, 2003, 46(2): 429-¬435.
[18] Leilei G, Li W, Suyuan Y. Theoretical Investigation on Dynamic Behavior of AMB¬Rotor System s ubject to Base Motion Disturbances[C]// Proceedings of the 12th International Symposium on Magnetic Bearings. Wuhan, China, 2010: 82-¬89.
[19] Guo J, Lei L, Wan L, Yu S. Theoretical investigation on dynamic behavior of AMB-rotor system subject to base motion disturbances[C]. International symposium on magnetic bearings, 2010: 447-544.
[20] Hawkins L, Murphy B, Zierer J, et al. Shock and vibration testing of an amb supported energy storage flywheel[J]. JSME International Journal Series C Mechanical System, Machine Elements and Manufacturing, 2003, 46(2): 429¬435.
[21] Y Yao, Y Ma, Y Su, et al. Vibration isolation optimized design of magnetic suspended pump [J]. International Journal of Applied Elecrromagnetics and Mechanics, 2020, 1-23.
[22] 徐园平. 柔性转子磁悬浮轴承支承特性辨识[D]. 南京航空航天大学.
Y Xu. Identification of Supporting Characteristics of Flexible Rotor AMBs System[D]. Nanjing University of Aeronautics and Astronautics.
[23] Y Xu, J Zhou, Z Lin, C Jin. Identification of Dynamic Parameters of Active Magnetic Bearings in a Flexible Rotor System Considering Residual Unbalances[J]. Mechatronics, 2018, 49:46-55.
[24] I R E. Stiffness and Damping in Mechanical Design[M]. New York: Marcel Dekker Inc., 1999
[25] 李德葆,陆秋海.工程振动试验分析[M].北京: 清华大学出版社,2004.
Li Debao, Lu Haiqiu. Engineering vibration test analysis[M]. Beijing: tsinghua university press, 2004.
[26] Mechanical vibration-vibration of rotating machinery equipped with active magnetic bearings-Part 2: evaluation of vibration: ISO14839-2 [S]. London: British Standard Institution, 2004.

PDF(3823 KB)

Accesses

Citation

Detail

段落导航
相关文章

/