基于体积填充法的弹体侵爆一体毁伤效应研究

李述涛,魏万里,陈叶青,陈龙明

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 194-204.

PDF(2079 KB)
PDF(2079 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 194-204.
论文

基于体积填充法的弹体侵爆一体毁伤效应研究

  • 李述涛,魏万里,陈叶青,陈龙明
作者信息 +

A study on damage effect of projectile penetration and explosion integration based on a volume filling method

  • LI Shutao,WEI Wanli,CHEN Yeqing,CHEN Longming
Author information +
文章历史 +

摘要

弹体侵爆一体试验很难区分侵彻和爆炸两种荷载的毁伤权重,目前亦未有较成熟的方法模拟弹体侵彻动爆一体的全过程。针对此问题提出一种基于体积填充法的弹体侵爆一体数值模拟方法,在背景网格(ALE)中通过体积填充生成炸药材料,同时赋予其与弹壳相同的初始速度,设置流固耦合算法约束弹壳与炸药协同变形和运动,同步侵彻目标介质后静态或动态起爆炸药。利用经验公式对惰性弹侵彻过程进行了模型验证,完成了侵彻静爆一体和侵彻动爆一体全过程数值模拟,给出混凝土介质内部压力场、表面成坑和成坑深度的变化规律,量化分析了侵爆一体过程中侵彻和爆炸两种荷载的毁伤权重。结果表明:侵彻静爆一体时,目标介质内未消散的侵彻波场会与爆炸冲击波场叠加,其压力峰值较侵彻后装药静爆的单一爆炸波场有所提高,但不明显;侵彻动爆一体时,炸药的动爆效应使得介质内爆炸冲击波场呈现出不规则的球形分布,速度方向峰值压力提高20%以上,在固定着靶速度的情况下,起爆时间越晚,表面成坑越小,成坑深度越大;在固定起爆深度的情况下,着靶速度越大,表面成坑越小,成坑深度越大。

Abstract

It is difficult to distinguish the damage weights of penetration and explosion loads in the test of projectile penetration and explosion integration, at present, there is no mature method to simulate the whole process of projectile penetration and dynamic explosion integration. To solve this problem, a numerical simulation method of projectile penetration and explosion integration based on volume filling method is proposed, the explosive material is generated by volume filling in the background grid (ALE), and given the same initial velocity as the shell. The fluid structure coupling algorithm is set to restrict the cooperative deformation and movement of the shell and the explosive, and the static or dynamic explosive is charged after penetrating the target medium synchronously. The empirical formula is used to verify the model of inert projectile penetration process, and the numerical simulation of the whole process of penetration and dynamic explosion integration and penetration and static explosion integration is completed. The variation laws of medium internal pressure field, surface cratering and cratering depth are given, and the damage weights of penetration and explosion loads in the process of penetration and explosion integration are quantitatively analyzed. The results show that: when the penetration and dynamic explosion integration, the non dissipated penetration wave field in the target medium will be superimposed with the explosion shock wave field, and the pressure peak is higher than that of the single explosion wave field of charge static explosion after penetration, but it is not obvious; When the penetration and dynamic explosion integration, the dynamic explosive effect of the explosive makes the explosion shock wave field in the medium present an irregular spherical distribution, which has an influence that can not be ignored. When the target velocity is fixed, the later the initiation time is, the smaller the surface crater is and the greater the crater depth is; In the case of fixed initiation depth, the greater the target velocity, the smaller the surface crater and the greater the crater depth.

关键词

体积填充法 / 侵彻静爆一体 / 侵彻动爆一体 / 动爆效应 / 数值模拟

Key words

Volume filling method / Penetration and dynamic explosion integration / Penetration and dynamic explosion integration / Dynamic explosion effect / numerical simulation

引用本文

导出引用
李述涛,魏万里,陈叶青,陈龙明. 基于体积填充法的弹体侵爆一体毁伤效应研究[J]. 振动与冲击, 2023, 42(12): 194-204
LI Shutao,WEI Wanli,CHEN Yeqing,CHEN Longming. A study on damage effect of projectile penetration and explosion integration based on a volume filling method[J]. Journal of Vibration and Shock, 2023, 42(12): 194-204

参考文献

[1] 李含健, 薛连莉, 周栋, 等. 2019 年精确制导武器战斗部和引信技术发展综述[J]. 飞航导弹, 2020 (1): 41-45.doi:10.16338/j.issn.1009-1319.20190869
LI H J, XUE L L, ZHOU D, et al. Summary of the development of warhead and fuze technology of precision guided weapons in 2019 [J] Cruise missile, 2020 (1): 41-45.doi:10.16338/j.issn.1009-1319.20190869
[2] 严平, 谭波. 战斗部及其毁伤原理[M].  国防工业出版社,2020.
[3] 钱七虎, 王明洋. 高等防护结构计算理论[M].  江苏科学技术出版社,2009.
[4] 卢正操, 张元迪, 文鹤鸣, 等. 长杆弹侵彻半无限混凝土靶的理论研究[J]. 现代应用物理, 2018, 4.
LU Z C, ZHANG Y D, WEN H M, et al. Theoretical study on penetration of long rods projectile into semi-infinite concrete targets [J] Modern Applied Physics, 2018, 4
[5] 雷振, 黄永辉, 陈文梦, 等. 爆炸冲击荷载下扩腔体积和能耗随抵抗线的变化规律研究[J]. 振动与冲击, 2021, 40 (4): 66-71.doi:10.13465/j.cnki.jvs.2021.04.010
LEI Z , HUANG Y H, CHEN W M, et al. Study on the variation law of expanded cavity volume and energy consumption with resistance line under explosion impact load [J] Vibration and shock, 2021, 40 (4): 66-71 doi:10.13465/j.cnki. jvs. 2021.04.010
[6] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究[J]. 爆炸与冲击, 2021, 41 (11): 113302-1-113302-8.
WANG K H, ZHOU G , LI M , et al. Experimental study of projectile penetrating reinforced concrete target at high speed [J]. Explosion and Impact, 2021, 41 (11): 113302-1-113302-8.
[7] 姜剑生, 何雨, 张小庆, 等. 斜侵彻薄靶板过程中弹体偏转的姿态修正方法[J]. 兵工学报, 2021.
JIANG J S, HE Y, Zhang X Q, et al. Attitude correction method for projectile deflection during oblique penetration of thin target plate[J]. Journal of Ordnance Engineering, 2021.
[8] 李述涛, 宝鑫, 刘晶波, 等. 基于爆源子结构的爆炸问题多尺度分析方法[J]. 振动与冲击, 2021.doi:10.13465/j.cnki.jvs.2021.20.009
LI S T, BAO X, LIU J B, et al. Multi-scale analysis method for explosion problem based on substructure of explosion source[J]. Vibration and Shock, 2021.doi:10.13465/j.cnki.jvs.2021.20.009
[9] 邓勇军. 钢筋混凝土靶侵彻的动态空腔膨胀阻力模型研究[D]. 中国工程物理研究院,2019.
[10] 邓云飞, 崔亚男, 慕忠成, 等. 卵形头弹体对素混凝土高速侵彻的实验研究[J]. 应用力学学报, 2019, 5.
DENG Y F, CUI Y N, MU Z C, et al Experimental study on high speed penetration of oval warhead into plain concrete [J] Journal of applied mechanics, 2019.
[11] 王晋平, 刘彦, 段卓平, 等. 带壳装药混凝土中爆炸震塌效应研究[J]. 兵工学报, 2014 (S2): 207-212.
WANG J P, LIU Y, DUAN Z P, et al. Research on explosion-induced collapse effect in shell-loaded concrete[J]. Journal of Ordnance Engineering, 2014 (S2): 207-212.
[12] 徐维铮, 黄超, 张磐, 等. 锥形长药柱水下爆炸冲击波参数计算方法[J]. 爆炸与冲击, 2022, 42 (1): 1-9.
XU W Z, HUANG C, Zhang P, et al. Calculation method of shock wave parameters for underwater explosion of conical long grain column[J]. Explosion and Shock, 2022, 42 (1): 1-9.
[13] Goel M, Kallada K P, Muthreja I. An Abridged Review of Empirical Formulae for Computation of Penetration, Scabbing and Perforation Depth Under Projectile Impact[J]. Archives of Computational Methods in Engineering, 2021, 28 (7): 4373-4382.
[14] Sun S, Lu H, Yue S, et al. The composite damage effects of explosion after penetration in plain concrete targets[J]. International Journal of Impact Engineering, 2021, 153: 103862.
[15] 卢浩, 岳松林, 孙善政, 等. 混凝土靶侵爆条件下破坏深度的模型实验研究[J]. 爆炸与冲击, 2021, 41 (7): 073301-1-073301-8.
LU H, Yue S L, SUN SZ, et al. Model experimental study on damage depth under concrete target blasting conditions [J]. Explosion and Impact, 2021, 41 (7): 073301-1-073301-8.
[16] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性[J]. 爆炸与冲击, 2015, 35 (1): 116-123.
HOU H L, ZHANG CL, Li M, et al. Damage characteristics of sandwich composite bulkhead structures under the combined action of shock waves and high-speed fragments [J]. Explosion and Shock, 2015, 35 (1): 116-123.
[17] YANG G, Wang G, Lu W, et al. A SPH-Lagrangian-Eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion[J]. KSCE Journal of Civil Engineering, 2018, 22 (8): 3085-3101.doi:
[18] LAI J, Zhou J, Yin X, 等. Dynamic behavior of functional graded cementitious composite under the coupling of high speed penetration and explosion[J]. Composite Structures, 2021, 274: 114326.doi:
[19] 杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析[J]. 中南大学学报: 自然科学版, 2017, 48 (12): 3284-3292.
YANG G D, WANG G H, LU W B, et al. Analysis of the damage effect of concrete targets under the combined action of penetration and explosion [J]. Journal of Central South University: Natural Science Edition, 2017, 48 (12): 3284-3292.
[20] 姬建荣, 苏健军, 陈君, 等. 动爆冲击波传播特性实验研究[J]. 兵器装备工程学报, 2019, 12.
JI J R, SU J J, CHEN J, et al. Experimental Research on Propagation Characteristics of Dynamic Explosion Shock Wave [J]. Chinese Journal of Weaponry and Equipment Engineering, 2019, 12.
[21] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究[J]. 爆炸与冲击, 2022, 42 (1): 013301-1-013301-14.
WANG Y, KONG X Z, FANG Q, et al. Numerical simulation study on damage and damage effect of projectile on concrete material after first penetration and then explosion [J]. Explosion and Shock, 2022, 42 (1): 013301-1-013301-14.
[22] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究[J]. 高压物理学报, 2017, 31 (3): 286-294.
JIANG H Y, Li Z R, ZHANG Y L, et al. Research on the shock wave characteristics of sports charge air explosion [J]. Chinese Journal of High Pressure Physics, 2017, 31 (3): 286-294.
[23] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究[J]. 爆炸与冲击, 2020, 40 (1): 71-79.
Chen L M, Li Z B, CHEN R. Study on the characteristics of explosive shock wave of charge[J]. Explosion and Shock, 2020, 40 (1): 71-79.
[24] 张奇, 张若京. ALE 方法在爆炸数值模拟中的应用[J]. 力学季刊, 2005, 26 (4): 639-642.
ZHANG Q, ZHANG R J. Application of ALE method in explosion numerical simulation[J]. Mechanics Quarterly, 2005, 26 (4): 639-642.
[25] FENG J, SONG M, SUN W, et al. Thick plain concrete targets subjected to high speed penetration of 30CrMnSiNi2A steel projectiles: Tests and analyses[J]. International Journal of Impact Engineering, 2018, 122: 305-317.
[26] 李利莎, 谢清粮, 郑全平, 等. 基于 Lagrange, ALE 和 SPH 算法的接触爆炸模拟计算[J]. 爆破, 2011, 28 (1): 18-22.
LI L S, XIE Q L, ZHENG Q P, et al. Simulation calculation of contact explosion based on Lagrange, ALE and SPH algorithms [J]. Blasting, 2011, 28 (1): 18-22.
[27] 王喜梦, 刘均, 陈长海, 等. 近距空爆载荷下钢板/聚脲复合结构动响应特性仿真[J]. 中国舰船研究, 2021, 16 (2): 116-124.doi:10.19693/j.issn.1673-3185.01833
WANG X M, LIU J, CHEN C H, et al. Simulation of dynamic response characteristics of steel plate/polyurea composite structure under short-range airburst load [J]. Chinese Ship Research, 2021, 16 (2): 116-124. doi:10.19693/j.issn.1673-3185.01833
[28] 王安宝, 邓国强, 杨秀敏, 等. 一个新的通用型侵彻深度计算公式[J]. 土木工程学报, 2021, 54 (10): 36-46.doi:10.15951/j.tmgcxb.2021.10.004
WANG A B, DENG G Q, YANG X M, et al. A new general penetration depth calculation formula [J]. Chinese Journal of Civil Engineering, 2021, 54 (10): 36-46.doi:10.15951/j.tmgcxb.2021.10.004
[29] 李述涛, 刘晶波, 宝鑫, 等. 采用粘弹性人工边界单元时显式算法稳定性分析[J]. 工程力学, 2020, 37 (11): 1-11.
LI S T, LIU J B, BAO X, et al. Stability Analysis of Explicit Algorithms Using Viscoelastic Artificial Boundary Elements [J]. Engineering Mechanics, 2020, 37 (11): 1-11.
[30] 魏万里, 李述涛, 陈叶青. 高速弹丸空爆过程数值模拟研究[J]. 第十七届中国 CAE 工程分析技术年会论文集, 2021.
WEI W L, LI S T, CHEN Y Q. Research on Numerical Simulation of High-speed Projectile Airburst Process [J]. Proceedings of the 17th China CAE Engineering Analysis Technology Annual Conference, 2021.

PDF(2079 KB)

Accesses

Citation

Detail

段落导航
相关文章

/