斜拉索时变索力的识别是斜拉桥结构状态评估和健康诊断的重要内容,然而目前此问题尚未得到很好的解决。基于改进多重同步压缩算法和高效脊线提取算法,提出一种斜拉索时变索力识别新方法。该方法利用拉索振动加速度响应获得时频谱,通过提取时频谱中的时频脊线得到拉索的瞬时振动频率,并根据张紧弦理论计算拉索时变索力。通过典型斜拉桥数值案例和拉索试验对该方法的适用性和精度进行验证。结果表明,在数值案例中,在10%噪声水平下时变索力识别平均误差在1.99%以内,最大误差为5.09%;在试验案例中,时变索力识别平均误差在2.52%以内,最大误差为8.77%。初步检验结果证明了本文所提方法具有较好的识别精度和噪声鲁棒性。
Abstract
Identification of time-varying cable force is an important content of structural condition evaluation and health diagnosis of a cable-stayed bridge. However, this problem has not been well solved by now. Based on the improved multisynchrosqueezing transform and efficient ridge extraction algorithm, a new method for time-varying cable force identification of stay cables is proposed in this paper. Firstly, the time-frequency spectrum is obtained by using the vibration acceleration response of the cable, and then the time-frequency ridge in the time-frequency spectrum is extracted to obtain the instantaneous frequency of the cable. Finally the time-varying cable force is calculated according to the tension string theory. The applicability and precision of the method are verified by a typical numerical case of cable-stayed bridge and a cable tests. The results show that:in the numerical case, under the noise level of 10%, the average error of time-varying cable force identification is less than 1.99%, and the maximum error is 5.09%; in the test, the average error of time-varying cable force identification is less than 2.52%, and the maximum error is 8.77%. The preliminary verifying results prove that the proposed method has good identification accuracy and noise robustness.
关键词
结构健康监测 /
斜拉索 /
时频分析 /
时变索力 /
同步压缩算法
{{custom_keyword}} /
Key words
structural health monitoring /
stay-cable /
time-frequency analysis /
time-varying cable force /
synchrosqueezing transform
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 项海帆. 高等桥梁结构理论[M]. 北京:人民交通出版社, 2001.
[2] 林元培. 斜拉桥[M]. 北京:人民交通出版社, 2004.
[3] Xue S, Shen R. Real time cable force identification by short time sparse time domain algorithm with half wave[J]. Measurement, 2020, 152: 107355.
[4] Kim S W, Jeon B G, Kim N S, et al. Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge[J]. Structural Health Monitoring, 2013, 12(5-6): 440-456.
[5] Cho S, Yim J, Shin S W, et al. Comparative field study of cable tension measurement for a cable-stayed bridge[J]. Journal of Bridge Engineering, 2013, 18(8): 748-757.
[6] Xu MQ, Wang SQ. Real-time identification of time-varying cable force using an improved adaptive extended Kalman filter [J]. Sensors, 2022, 22(11): 4212.
[7] Bao Y, Shi Z, Beck J L, et al. Identification of time‐varying cable tension forces based on adaptive sparse time‐frequency analysis of cable vibrations[J]. Structural Control and Health Monitoring, 2017, 24(3): e1889.
[8] Bao Y, Guo Y, Li H. A machine learning–based approach for adaptive sparse time–frequency analysis used in structural health monitoring[J]. Structural Health Monitoring, 2020, 19(6): 1963-1975.
[9] 刘景良, 任伟新, 王佐才, 等. 基于同步挤压小波变换的结构瞬时频率识别[J]. 振动与冲击, 2013, 32(18): 37-42.
LIU Jingliang, REN Weixin, WANG Zuo-cai, et al. Instantaneous frequency identification based on synchrosqueezing wavelet transformation[J]. Journal of Vibration and Shock, 2013, 32(18): 37-42.
[10] 刘景良, 郑锦仰, 林友勤, 等. 变分模态分解和同步挤压小波变换识别时变结构瞬时频率[J]. 振动与冲击, 2018, 37(20): 24-31.
LIU Jingliang, ZHENG Jinyang, LIN Youqin, et al. Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchrosqueezing wavelet transform[J]. Journal of Vibration and Shock, 2018, 37(20): 24-31.
[11] 刘景良,王新宇,郑锦仰,盛叶,骆勇鹏.基于同步提取和时频系数模极值的瞬时频率识别[J].振动.测试与诊断,2021,41(03):519-526+622.
LIU Jingliang, WANG Xinyu, ZHENG Jinyang, et al. Instantaneous frequency identification based on synchroextraction and maximum modulus of time-Frequency coefficients[J].Journal of Vibration,Measurement & Diagnosis, 2021,41(03):519-526+622.
[12] Yang Y, Li S, Nagarajaiah S, et al. Real-time output-only identification of time-varying cable tension from accelerations via complexity pursuit[J]. Journal of Structural Engineering, 2016, 142(1): 04015083.
[13] Hou S, Dong B, Fan J, et al. Variational mode decomposition based time-varying force identification of stay cables[J]. Applied Sciences, 2021, 11(3): 1254.
[14] Zhang X, Peng J, Cao M, et al. Identification of instantaneous tension of bridge cables from dynamic responses: STRICT algorithm and applications[J]. Mechanical Systems and Signal Processing, 2020, 142: 106729.
[15] Yu G, Wang Z, Zhao P. Multisynchrosqueezing transform[J]. IEEE Transactions on Industrial Electronics, 2018, 66(7): 5441-5455.
[16] 张军政. 缆索承重桥梁拉吊索时变索力识别研究[D].西南交通大学, 2021.
ZHANG junzheng. Study on identification of time-varying cable force of cable supported bridge[D]. Southwest Jiaotong University, 2021.
[17] Yu G. A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals[J]. Journal of Sound and Vibration, 2021, 492: 115813.
[18] Li J X, Yi T H, Qu C X, et al. Adaptive Identification of Time-Varying Cable Tension Based on Improved Variational Mode Decomposition[J]. Journal of Bridge Engineering, 2022, 27(8): 04022064.
[19] Meignen S, Pham D H, McLaughlin S. On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2093-2103.
[20] 李惠, 鲍跃全, 李顺龙,等. 结构健康监测数据科学与工程[M]. 北京:科学出版社, 2016.
[21] Li H , Zhang F , Jin Y . Real-time identification of time-varying tension in stay cables by monitoring cable transversal acceleration[J]. Structural Control & Health Monitoring, 2014, 21(7):1100-1117.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}