蜂窝与梯形格构腹板增强泡沫夹芯复合材料防撞装置吸能特性

韩伟1,方海1,祝露1,韩娟1,王健2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 236-248.

PDF(4513 KB)
PDF(4513 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 236-248.
论文

蜂窝与梯形格构腹板增强泡沫夹芯复合材料防撞装置吸能特性

  • 韩伟1,方海1,祝露1,韩娟1,王健2
作者信息 +

Energy absorption behavior of an anti-collision device with foam-filled sandwich composite materials reinforced by honeycomb and trapezoidal lattice webs

  • HAN Wei1, FANG Hai1, ZHU Lu1, HAN Juan1, WANG Jian2
Author information +
文章历史 +

摘要

为分析格构腹板增强泡沫夹芯复合材料试件的力学性能及吸能效果,对其进行准静态压缩试验。该试件的面层和格构腹板均使用玻璃纤维增强复合材料(Glass fiber reinforced polymer,GFRP),芯材则使用聚氨酯(Polyurethane,PU)泡沫。由这两种材料制备的试件包括六边形(Hexagonal,H)格构和梯形(Trapezoidal,T)格构试件。试验结果表明,45º梯形格构试件的荷载-位移曲线最为理想,该试件不但避免了承载力突降的问题,同时也极大的提高了弹性行程。对于六边形格构试件,泡沫密度的提升对试件弹性极限承载力和吸能特性影响较大。基于梯形格构试件所截取基体单元受力情况的分析,得到45°梯形格构试件的等效压缩弹性模量。基于ANSYS/LS-DYNA模拟试件的压缩试验,模拟结果与试验值吻合较好。最后通过船-防撞装置-桥墩的碰撞模拟情况,发现梯形格构复合材料防撞装置对船撞力的削减程度较大,抗撞防护性能更优。

Abstract

In order to analyze the mechanical properties and energy absorption effect of foam-filled sandwich composite materials reinforced specimens, quasi-static compression experiments were carried out. The Glass fiber reinforced polymer(GFRP) was used on the surface and lattice webs of the specimen, and polyurethane(PU) foam was used for core material. The specimens prepared from these two materials include hexagonal (H) lattice and trapezoidal (T) lattice. The experiment results show that the load displacement curve of 45 º trapezoidal lattice specimen is the most ideal. The specimen not only avoids the problem of sudden drop of bearing capacity, but also greatly improves the elastic stroke. For hexagonal lattice specimens, the increase of foam density has great influence on the elastic ultimate bearing capacity and energy absorption characteristics of specimens. Based on the stress analysis of the matrix element intercepted by the trapezoidal lattice specimen, the equivalent compressive elastic modulus of the 45 ° trapezoidal lattice specimen is obtained. Based on the compression experiment of ANSYS / LS-DYNA simulation specimen, the simulation results are in good agreement with the experiment values. Finally, through the collision simulation of ship anti-collision device pier, it is found that the trapezoidal lattice composite anti-collision device has a greater reduction of ship collision force and better anti-collision protection performance.

关键词

准静态压缩 / 力学性能 / 能量吸收 / 有限元模拟 / 防撞装置

Key words

quasi-static compression / mechanical properties / energy absorption properties / finite element simulation / anti-collision device

引用本文

导出引用
韩伟1,方海1,祝露1,韩娟1,王健2. 蜂窝与梯形格构腹板增强泡沫夹芯复合材料防撞装置吸能特性[J]. 振动与冲击, 2023, 42(12): 236-248
HAN Wei1, FANG Hai1, ZHU Lu1, HAN Juan1, WANG Jian2. Energy absorption behavior of an anti-collision device with foam-filled sandwich composite materials reinforced by honeycomb and trapezoidal lattice webs[J]. Journal of Vibration and Shock, 2023, 42(12): 236-248

参考文献

[1] 邱信明, 潘明乐, 虞晓欢, 等. 不同失效模式下轴压管状结构的吸能特性比较[J]. 力学与实践, 2016, 38(5): 477-492.
QIU Xinming, PAN Ming-le, YU Xiaohuan, et al. Analysis of The Energy Absorption Properties for Tubular Structure Under Axial Compression of Different Failure Models.[J]. Mechanics in Engineering, 2016, 38(5): 477-492.
[2] 项燕飞. 能量吸收材料与结构的评价指标[D]. 宁波: 宁波大学, 2014.
XIANG Yan-fei. Key Performance Indicators(KPIs) of Energy Absorption of Materials and Structures[D]. Ningbo: Ningbo University, 2014.
[3] Huang X, Lu G, Yu T. On the axial splitting and curling of circular metal tubes[J]. International journal of mechanical sciences, 2002, 44(11): 2369-2391.
[4] 王凯, 熊晨曦, 贺强. 超轻复合材料机翼结构设计及成型技术研究[J]. 玻璃钢/复合材料, 2020(4): 72-78.
WANG Kai, XIONG Chen-xi, HE Qiang. Research on the technology of structure design and forming of ultra-light composite wing[J]. Fiber Reinforced Plastics/Composites, 2020(4): 72-78.
[5] 沈超明, 叶仁传, 田阿利. 钢/聚氨酯夹层结构动态压缩力学性能与本构模型研究[J]. 振动与冲击, 2016, 35(10): 115-119.
SHEN Chao-ming, YE Ren-chuan, TIAN A-li. Experimental study on dynamic compressive mechanical properties of steel /polyurethane sandwich structure and its constitutive model[J]. Journal of Vibration and Shock, 2016, 35(10): 115-119.
[6] 薄晓丽. 整体中空夹层复合材料力学性能的数值分析与实验研究[D]. 南京: 南京航空航天大学, 2009.
BO Xiao-li. Experimental and Numerical evaluation on Mechanical Property of Hollow Integrated Sandwich Composites. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[7] 李海伟. 夹芯结构复合材料弹性力学性能预测与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
Li Haiwei. Prediction and Text Research of Elastic MeChanical Properties of Sandwich Structure Composite Matericl[D]. Harbin: Harbin Institute of Technology, 2011.
[8] 鄂玉萍, 张喜俊. 泡沫填充型蜂窝纸板面外压缩性能实验研究[J]. 振动与冲击, 2017, 36(20): 146-150+172.
E Yu-ping, ZHANG Xijun. An experimental study on out-of-plane compressive behavior of a honeycomb paperboard filled with foams[J]. Journal of Vibration and Shock, 2017, 36(20): 146-150+172.
[9] 吴志敏, 刘伟庆, 方海, 等. 广深高速(沿江)大桥复合材料防撞结构准静态压缩吸能试验研究[J]. 公路, 2014, 59(10): 37-41.
WU Zhi-min, LIU Wei-qing, FANG Hai. et al. Experimental Investigation on the Quasi-static Crushing of Sandwich Composite Materials Used in GuangShen Highway Bridge[J]. Highway, 2014, 59(10): 37-41.
[10] 樊子砚, 方海, 庄勇, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能试验[J]. 玻璃钢/复合材料, 2017(01): 5-10.
FAN Zi-yan, FANG Hai, ZHUANG Yong, et al. Experimental Study on Energy Absorption of the Foam Sandwich Composite Enhanced Lattice Web Under Quasi-static Compression[J]. Fiber Reinforced Plastics/Composites, 2017(01): 5-10.
[11] 石昌, 王继辉, 朱俊, 等. 梯形格栅结构增强泡沫夹芯复合材料平压性能[J/OL]. 复合材料学报, 2021, 1-10.
SHI Chang, WANG Ji-hui, ZHU Jun, et al. Flatwise Compression Properties of Trapezoidal Lattice-web Reinforced Foam Core Sandwich Composites[J/OL]. Acta Materiae Compositae Sinica, 2021, 1-10.
[12] Sharaf T, Shawkat W, Fam A. Structural performance of sandwich wall panels with different foam core densities in one-way bending[J]. Journal of Composite Materials, 2010, 44: 2249-2263.
[13] Niknejad A, Elahi S A, Liaghat G H. Experimental investigation on the lateral compression in the foam-filled circular tubes[J]. Materials and Design, 2012, 36: 24-34.
[14] Niknejad A, Assaee H, Elah S A, et al. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes - An experimental study[J]. Composite Structures, 2013, 100: 479-492.
[15] 庄勇, 王健, 方海, 等. 空间格构腹板增强泡沫夹芯复合材料试件准静态压缩吸能试验[J]. 建筑科学与工程学报, 2018, 35(05): 70-77.
ZHUANG Yong, Wang jian, FANG Hai, et al. Experiment on energy absorption of foam sandwich composite specimens with spatial reinforced lattice web under quasi-static compression[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 70-77.
[16] GB/T 1446-2005, 纤维增强塑料性能试验方法总则[S]. 北京: 中国标准出版社, 2005.
GB/T 1446-2005, Fiber-reinforced plastic composite-The generals for determination of properties[S]. Beijing: Standards Press of China, 2005.
[17] GB/T 1448-2005, 纤维增强塑料压缩性能试验方法 [S]. 北京: 中国标准出版社, 2005.
GB/T 1448-2005, Fiber-reinforced Plastics Composites-Determination of Compressive Properties[S]. Beijing: Standards Press of China, 2005.
[18] GB/T 8813-2020, 硬质泡沫塑料压缩性能的测定[S]. 北京: 中国标准出版社, 2020.
GB/T 8813-2020, Rigid Cellular Plastics-Determination of Compression Properties[S]. Beijing: Standards Press of China, 2020.
[19] GB/T 1453—2005, 夹层结构或芯子平压性能试验方法[S]. 北京: 中国标准出版社, 2005.
GB/T 1453-2005, Test method for flatwise compression properties of sandwich constructions or cores[S]. Beijing: Standards Press of China, 2005.
[20] 金晖. 矩形填充多孔材料夹层结构的力学性能等效模型研究[D]. 南京: 南京航空航天大学,2009.
JIN Hui. Research on equivalent models of the mechanical function for sandwich structure with rectangular filled porous materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[21] 赵金森. 铝蜂窝夹层板的力学性能等效模型研究[D]. 南京: 南京航空航天大学, 2006.
ZHAO Jin-sen. Research on equivalent models of the mechanical function for aluminium honeycomb sandwich panel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006.
[22] 富明慧, 尹久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999, 31(01): 113-118.
FU Ming-hui. Yin Jiu-ren. Equivalent elastic parameters of the honeycomb core[J]. Acta Mechanica Sinica, 1999, 31(01): 113-118.
[23] Jiang H, Mi G C. Evaluation of a New FRP Fender System for Bridge Pier Protection against Vessel Collision[J]. Journal of Bridge Engineering, 2015, 20(2).
[24] Brown AJ. Modeling Structural Damage in Ship Collisions. SSC-1400 draft report[R]. Virginia Tech, Blacksburg (VA); 2002.
[25] Cowper G R, Symonds P S . Strain Hardening and Strain Rate Effects in The Impact Loading of Cantilever Beams[J]. Small Business Economics, 1957.
[26] Iannucci L. Progressive failure modeling of woven carboncomposite under impact[J]. International Journal of Impact Engineering, 2006, 32(6): 1013-1043.
[27] J. Y. Chen, H. Fang, W. Q. Liu, L. Zhu, Y. Zhuang, J. Wang, J. Han. Energy absorption of foam-filled multi-cell composite panels under quasi-static compression, Compos Part B-Eng. 153 (2018) 295-305.

PDF(4513 KB)

297

Accesses

0

Citation

Detail

段落导航
相关文章

/