考虑包容性约束的加筋机匣轻量化设计

孙燕杰1,马宁2,余学冉1,宋志博2,周才华2,徐胜利3,王博2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 274-282.

PDF(2189 KB)
PDF(2189 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 274-282.
论文

考虑包容性约束的加筋机匣轻量化设计

  • 孙燕杰1,马宁2,余学冉1,宋志博2,周才华2,徐胜利3,王博2
作者信息 +

Lightweight design of stiffened casing considering containment constraints

  • SUN Yanjie1, MA Ning2,YU Xueran1, SONG Zhibo2, ZHOU Caihua2, XU Shengli3, WANG Bo2
Author information +
文章历史 +

摘要

为保证飞机航行安全,航空发动机机匣需满足包容性要求以抵抗高能碎片的冲击。针对某型航空发动机内高压压气机机匣的轻量化设计需求,基于LS-DYNA进行包容性分析,揭示了传统光壁机匣与加筋机匣的包容机理,二者均通过鼓凸塑性变形吸收叶片动能。另外,为充分挖掘加筋构型的轻量化潜力,提出一种考虑包容性能的加筋机匣优化设计框架,主要包括:提出一种机匣厚度损伤包容准则,建立结合参数化建模、有限元分析及包容性判断的优化流程,采用自主研发的优化软件Deskopt进行优化迭代并输出最优加筋机匣构型。设计结果表明,相较传统光壁机匣构型,最优加筋机匣在保证包容能力的前提下实现减重20.86%。

Abstract

The aero-engine casing should satisfy the containment requirements to resist the impact of high-energy fragments in order to ensure the safety of aircraft flight. The finite element analysis of casing containment was carried out by LS-DYNA to design the lightweight configuration of high pressure compressor casing, then the containment mechanism which dominated by absorbing blade kinetic energy through bulging plastic deformation of both smooth wall casing and stiffened casing can be obtained. Furthermore, it is necessary to propose an optimal design framework of stiffened casing to fully explore the structural performance. A containment mechanism based on the damage depth of casing thickness was proposed. Then, an optimization process combining parametric modeling, numerical simulation and containment evaluation was established. The software Deskopt which independently developed was used for optimization iteration and the optimal configuration was output. The results show that compared with the smooth wall casing, the optimal stiffened casing can reduce the weight by 20.86% on the premise of ensuring containment.

关键词

机匣包容性 / 加筋结构 / 结构优化 / 数值仿真

Key words

casing containment / stiffened structure / structural optimization / numerical simulation

引用本文

导出引用
孙燕杰1,马宁2,余学冉1,宋志博2,周才华2,徐胜利3,王博2. 考虑包容性约束的加筋机匣轻量化设计[J]. 振动与冲击, 2023, 42(12): 274-282
SUN Yanjie1, MA Ning2,YU Xueran1, SONG Zhibo2, ZHOU Caihua2, XU Shengli3, WANG Bo2. Lightweight design of stiffened casing considering containment constraints[J]. Journal of Vibration and Shock, 2023, 42(12): 274-282

参考文献

[1] Sarkar S, Atluri S N. Effects of multiple blade interaction on the containment of blade fragments during a rotor failure [J]. Finite Elements in Analysis and Design, 1996, 23(2-4):221-223.
[2] Le D Y, Evaluation of lightweight material concept for aircraft turbine engine rotor failure protection [J].Gas Turbines, 1997.
[3] Luca J D. Development of turbine containments for aircraft [D]. University of Massachusetts Lowell, 1990.
[4] 柴象海, 张晓云, 侯亮,等. 航空发动机风扇机匣包容性等效试验与分析方法[J]. 振动与冲击, 2016, 35(2):162-167.
    CHAI Xianghai, ZHANG Xiaoyun, HOU Liang, et al. Equivalent test and simulation verification for fan containment case of aero engine[J]. Journal of vibration and shock, 2016, 35(2):162-167.
[5] 刘闯, 陈国栋, 黄福增,等. 航空发动机机匣包容性试验研究[J]. 航空发动机, 2020, 46(3):6.
    LIU Chuang, CHEN Guodong, HUANG Fuzeng, et al. Study on aeroengine casing containment test[J]. Aeroengine, 2020, 46(3):6.
[6] 姜新瑞, 林山, 李诗军. 大涵道比涡扇发动机整机包容试验方法分析[J]. 航空发动机, 2021, 47(S01):4.
    JIANG Xinrui, LIN Shan, LI Shijun. Analysis of engine containment test method of turbofan engine with high by-pass ratio[J]. Aeroengine, 2021, 47(S01):4.
[7] 刘璐璐, 罗刚, 陈伟,等. 基于打靶试验的风扇机匣包容能力评估方法[J]. 航空发动机, 2019, 45(1):7.
    LIU Lulu, LUO Gang, CHEN Wei. Containment capability evaluation method of fan casing based on ballistic impact test[J]. Aeroengine, 2019, 45(1): 7.
[8] 沈尔明, 王志宏, 赵凤飞,等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013(13):4.
    SHEN Er-ming, WANG Zhihong, ZHAO Fengfei, et al. Application and development of material for aero-engine fan case[J]. Aeronautical Manufacturing Technology, 2013(13):4.
[9] 张升, 冲击载荷作用下矩形加筋板的塑性动力响应[D]. 哈尔滨:哈尔滨工程大学, 2018.
    ZHANG Sheng. The dynamic Plastic response of rectangular stiffened panel under shock load[D]. Harbin: Harbin Engineering University, 2018.
[10] 杜志鹏, 李晓彬, 夏利娟,等. 用数值方法分析板梁结构抗动能穿甲性能[J]. 振动与冲击, 2006(03):180-182+192+216.
    DU Zhipeng, LI Xiaobin, XIA Lijuan, et al. Numerical study on the perforation resist ability of plate girder target[J]. Journal of vibration and shock, 2006(03):180-182+192+216.
[11] Hermosilla U, Alcaraz J L, Aja A M. Blade Impact Simulation Against Turbine Casings[J].
[12] 杨世全, 唐平, 谌勇. 弹丸对加筋板穿甲的数值模拟研究[J]. 含能材料, 2007, 15(6): 561-565.
    YANG Shiquan, TANG Ping, SHEN Yong. Numerical investigation on perforation of projectile impacting stiffened plate[J]. Energetic material,2007, 15(6): 561-565.
[13] 刘晓明, 张世联, 吴迪,等. 加筋板架和均质靶板抗截卵形动能弹穿甲数值模拟研究[J]. 振动与冲击, 2007, 26(8):6.
    LIU Xiaoming, ZHANG Shilian, WU Di, et al. Numerical simulation for the effect of broadside structure on resisting truncated-ogive nose projectile penetration[J]. Journal of vibration and shock, 2007, 26(8):6.
[14] 张敏, 赵延杰, 王海坤,等. 船体加筋板耐撞性解析预报方法研究[J]. 振动与冲击, 2021, 40(21):7.
    ZHANG Min, ZHAO Yanjie, WANG Haikun, et al. Analytical prediction method for crashworthiness of ship stiffened panels. Journal of vibration and shock, 2021, 40(21):7.
[15] Liu L, Zhao Z, Chen W, et al. Ballistic impact behaviour of stiffened aluminium plates for gas turbine engine containment system[J]. International Journal of Crashworthiness, 2017, 22(5):1-12.
[16] 何庆. 航空发动机机匣包容性机理及数值仿真方法研究 [D]. 浙江:浙江大学, 2012.
    HE Qing. Research on the mechanism and simulation methodology development for aero-engine casing/blade containment[D]. Zhejiang: Zhejiang University, 2012.
[17] 宣海军, 陆晓, 洪伟荣,等. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010(8):11.
    XUAN Haijun, LU Xiao, HONG Weirong, et al. Review of research on Aeroengine casing containment[J]. Journal of Aerospace Power, 2010(8):11.
[18] 陈国栋, 刘闯, 王洪斌,等. 航空发动机包容试验研究综述[J]. 航空发动机, 2019, 45(3):9.
    CHEN Guodong, LIU Chuang, WHANG Hongbin, et al. Review of aeroengine containment test research[J]. Aeroengine, 2019, 45(3):9.
[19] 纪双英, 王晋, 邢军,等. 国外航空发动机风扇包容机匣研究进展[J]. 航空制造技术, 2010(14):4.
    JI Shuangying, WANG Jin, XING Jun, et al. Research development of containment casing of aeroengine fan abroad[J]. Aeronautical Manufacturing Technology, 2010(14):4.
[20] 黄涛, 吴卫国, 李晓彬,等. 截锥形弹体斜穿甲花瓣型破坏模型[J]. 振动与冲击, 2010(2):3.
    HUANG Tao, WU Weiguo, Li Xiaobin, et al. Oblique armor-piercing effect of a truncated cylindroconical projectile[J]. Journal of vibration and shock, 2010(2):3.
[21] 谭毅, 杨书仪, 左建华, 郭小军, 孙要兵. 面向包容性的航空发动机机匣研究综述[J/OL]. 航空工程进展: 1-12[2022-08-28].http://kns.cnki.net/kcms/detail/61.1479.V.20220321.1715.002.html
    TAN Yi, YANG Shuyi, ZUO Jianhua, GUO Xiaojun, SUN Yaobing. Review of aeroengine casing containment research[J/OL]. Advances in Aeronautical Science and Engineering:1-12[2022-08-28].http://kns.cnki.net/kcms/detail/61.1479.V.20220321.1715.002.html
[22] 范晓敬. U形截面包容环包容性仿真研究与结构优化研究[D].浙江:浙江大学, 2021.
    FAN Xiaojing. Numerical simulation and structural optimization of U-section containment rings[D]. Zhejiang: Zhejiang University, 2021.
[23] 杨乐. 加筋铝合金板抗冲击性能研究及结构优化[D].南京:南京航空航天大学, 2012.
    YANG Le. Investigations on the impact resistance and structural optimization of stiffened aluminum plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[24] 陈光涛, 宣海军, 刘璐璐, 等. 钛合金加筋板抗碎片冲击性能研究[C]. 全国冲击动力学学术会议.中国力学学会, 2013.
    CHEN Guangtao, XUAN Haijun, LIU Lulu, et al. Study on the ability to resist debris impact of titanium stiffened plate[C]. National Conference on Impact Dynamics. Chinese Society of Theoretical and Applied Mechanics, 2013.
[25] Hallquist J. LS-DYNA Keyword User's Manual, Version: 970[J]. 2003,
[26] 朱慈勉. 结构力学 下册[M]. 北京: 高等教育出版社, 2004年.
    ZHU Cimian. Structural mechanics Next volume[M]. Beijing: Higher Education Press, 2004.
[27] Knight N F, Jaunky N, Lawson R E, et al. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA[J]. Finite Elements in Analysis and Design,2000, 36(2): 99-133.
[28] Sinha S K, Dorbala S J J. Dynamic Loads in the Fan Containment Structure of a Turbofan Engine[J]. Journal of Aerospace Engineering,2009, 22(3): 260-269.
[29] 谢文涛. 航空发动机动力涡轮包容设计与验证技术研究[D]. 上海:上海交通大学, 2017.
    XIE Wentao. Containment design and verification technology research on powerturbing of aeroenging[D]. Shanghai : Shanghai Jiao Tong University.
[30] 汪定伟. 智能优化方法[M]. 高等教育出版社. 2007.
    WANG Dingwei. Intelligent optimization method[M]. Higher Education Press. 2007.
 

PDF(2189 KB)

Accesses

Citation

Detail

段落导航
相关文章

/