紊流激励下基于贝叶斯统计推断的颤振边界预测方法研究

王若婵1,严刚1,李扬2,施远1,周大恒1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 283-289.

PDF(1436 KB)
PDF(1436 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 283-289.
论文

紊流激励下基于贝叶斯统计推断的颤振边界预测方法研究

  • 王若婵1,严刚1,李扬2,施远1,周大恒1
作者信息 +

A Bayesian statistical inference-based flutter boundary prediction method under turbulence excitation

  • WANG Ruochan1, YAN Gang1, LI Yang2, SHI Yuan1, ZHOU Daheng1
Author information +
文章历史 +

摘要

本文提出将贝叶斯统计推断方法推广应用于大气紊流激励下飞行器结构的颤振分析,对含不确定性因素影响的模态参数识别与颤振边界预测进行研究。在采用自然激励技术从结构在大气紊流激励下的响应中提取自由衰减信号后,基于贝叶斯统计推断,通过马尔科夫链蒙特卡罗马尔科夫链蒙特卡洛(Markov chain Monte Carlo ,MCMC)算法对结构模态参数的后验概率密度函数进行采样识别,并利用Z-W颤振裕度法获取颤振速度概率分布,预测颤振边界并分析其不确定性。进行了数值仿真研究,对大气紊流激励下的结构响应数据进行分析,验证了所提出方法的有效性。

Abstract

This paper proposes to extend Bayesian statistical inference method to flutter analysis for aircraft structures under excitation of atmospheric turbulence to consider the uncertainties in modal parameter identification and flutter boundary prediction. After the free decay responses are extracted from the structural responses under the excitation of atmospheric turbulence by natural excitation technique (NExT), based on Bayesian statistical inference, the posterior probability density functions of structural modal parameters are sampled and identified by Markov chain Monte Carlo (MCMC) algorithm. Then the probability density distribution for flutter velocity is obtained by Z-W flutter margin method to predict the flutter boundary and analyze the associated uncertainties. Numerical simulation studies are carried out to analyze the structural response data excited by atmospheric turbulence, and the effectiveness of the proposed method is verified.

关键词

颤振边界预测 / 紊流激励 / 颤振裕度法 / 贝叶斯统计推断 / 马尔科夫链蒙特卡洛算法

Key words

Flutter boundary prediction / turbulence excitation / flutter margin method / Bayesian statistical inference / Markov chain Monte Carlo algorithm

引用本文

导出引用
王若婵1,严刚1,李扬2,施远1,周大恒1. 紊流激励下基于贝叶斯统计推断的颤振边界预测方法研究[J]. 振动与冲击, 2023, 42(12): 283-289
WANG Ruochan1, YAN Gang1, LI Yang2, SHI Yuan1, ZHOU Daheng1. A Bayesian statistical inference-based flutter boundary prediction method under turbulence excitation[J]. Journal of Vibration and Shock, 2023, 42(12): 283-289

参考文献

[1] 唐炜,史忠科.飞机颤振试飞数据处理[M].北京:国防工业出版社,2018.
Tang Wei, Shi Zhongke. Aircraft flutter test flight data  processing[M].Beijing:National Defense Industry Press,2018.
[2] Kayran A. Flight flutter testing and aeroelastic stability of aircraft [J]. Aircraft Engineering and Aerospace Technology, 2007, 79(5): 494-506.
[3] Zheng H, Liu J, Duan S. Flutter test data processing based on improved Hilbert-Huang transform [J]. Mathematical Problems in Engineering, 2018, 2018: 3496870.
[4] 郭洪涛,路波,吕彬彬,余立. 面向紊流激励响应的颤振亚临界预测方法[C].第13届中国系统仿真技术及其应用学术年会论文集,2011:955-960.
Guo Hongtao, Lu Bo, LV Binbin, Yu Li Flutter subcritical  prediction method for turbulent excitation response [C]  Proceedings of the 13th China Annual Conference on system  simulation technology and its applications, 2011:955-960
[5] Sudha,U P V, Deodhare G S, Venkatraman K. Frequency, damping and flutter prediction from aircraft flight data using autoregressive model [J]. Journal of Aircraft, 2018, 55(6): 2179–2190.
[6] 顾文景,周丽. 改进VMD算法在颤振试验信号模态参数辨识中的应用[J]. 振动工程学报,2021, 34(2): 292-300.
Gu Wenjin, Zhou Li. Application of improved VMD  algorithm  in modal parameter identification of flutter test  signals[J].  Journal of Vibration Engineering, 2021, 34(2):  292-300.
[7] Iovnovich M, Nahom T, Presman M, et al. Assessment of advanced flutter flight-test techniques and flutter boundary prediction methods [J]. Journal of Aircraft, 2018, 55(5): 1877-1889.
[8] 郑宇宁. 多源不确定性条件下气动弹性系统颤振可靠性分析方法[J]. 振动与冲击,2021, 40(3): 54-62.
Zheng Yuning. Flutter reliability analysis method for  aeroelastic systems with multi-source uncertainty[J]. Journal  of Vibration and Shock, 2021, 40(3): 54-62.
[9] Poirel D, Dunn S, Porter J. Flutter-margin method accounting for modal parameter uncertainties [J]. Journal of Aircraft, 2005, 42(5): 1236-1243.
[10] Abbasi A A, Cooper J E. Statistical evaluation of flutter boundaries from flight flutter test data [J]. The Aeronautical Journal, 2009, 113(1139): 41-51.
[11] Khalil M, Poirel D, Sarkar A. Bayesian analysis of the flutter margin method in aeroelasticity [J]. Journal of Sound and Vibration, 2016, 384: 56-74.
[12] James G H, Carne T G, Lauffer J P. The natural excitation technique for modal parameter extraction from operating wind turbines [R].SAND 92 1666.ON:DE93010611,Albuquerque, NM (United States): Sandia National Lab-oratory, 1993.
[13] 钟军军,董聪. 环境激励下识别结构模态自然激励-时域分解法[J]. 振动与冲击,2013, 32(18): 121-125.
Zhong Junjun, Dong Cong. Identification of structural modes  under environmental excitations by natural excitations time- domain decomposition method [J]. Journal of Vibration and  Shock, 2013, 32(18): 121-125.
[14] Kordkheili S A H, Massouleh S H M, Hajirezayi S, et al. Experimental identification of closely spaced modes using NExT-ERA [J]. Journal of Sound and Vibration, 2018, 412: 116-129.
[15] 李扬,周丽,杨秉才.基于自然激励技术的颤振边界预测[J].航空动力学报,2016,31(11):2744-2749.
Li Yang, Zhou Li, Yang Bingcai. Flutter boundary prediction  based on natural excitation technology [J]. Journal of  Aerospace Power,2016,31(11):2744-2749.
[16] Nichols J M, Link W A, Murphy K D et al. A Bayesian approach to identifying structural nonlinearity using free-decay response: application to damage detection composites [J]. Journal of Sound and Vibration, 2010, 329: 2995-3007.
[17] Yan G. A Bayesian approach for damage localization in plate-like structures using Lamb waves[J]. Smart Materials and Structures,2013,22(3): 035012.
[18] 刘金山,夏强. 基于MCMC算法的贝叶斯统计方法 [M].北京:科学出版社, 2016.
Liu Jinshan, Xia Qiang. Bayesian statistical method bas- ed on MCMC algorithm [M].Beijing:Science Press, 2016.
[19] Zimmerman N H, Weissenburger J T. Prediction of flutter onset speed based on flight testing at subcritical speeds [J]. Journal of Aircraft, 1964, 1(4): 190-202.
[20] 张伟伟,钟华寿,肖华,等. 颤振飞行试验的边界预测方法回顾与展望[J]. 航空学报,2015, 36(05): 1367-1384.
Zhang Weiwei, Zhong Huashou, Xiao Hua,et al.Review and  prospect of boundary prediction methods for flutter flight  tests[J]. Acta Aeronautica et Astronautica Sinica, 2015,  36(05): 1367-1384.
[21] 李扬. 基于大气紊流激励响应的机翼颤振边界预测研究[D]. 南京:南京航空航天大学,2018.
Li Yang. Prediction of wing flutter boundary based on atmospheric turbulence excitation Response[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018.
[22] Hassig H J. An approximate true damping solution of the flutter equation by determinant iteration [J]. Journal of Aircraft, 1971, 8(11):885-889.

PDF(1436 KB)

334

Accesses

0

Citation

Detail

段落导航
相关文章

/