复合材料双层锥壳与环板耦合结构振动特性研究

史冬岩1,张颖1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 317-325.

PDF(1818 KB)
PDF(1818 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 317-325.
论文

复合材料双层锥壳与环板耦合结构振动特性研究

  • 史冬岩1,张颖1,2
作者信息 +

A study on vibration characteristics of a composite double-layer conical shell and annular plate coupling structure

  • SHI Dongyan1, ZHANG Ying1,2
Author information +
文章历史 +

摘要

本文采用谱几何法对不同边界条件下复合材料双层锥壳与环板耦合结构的振动特性数学模型进行建立,采用改进傅里叶级数对位移容许函数进行设置。采用虚拟边界弹簧技术,通过设置三组线性弹簧和两组扭转弹簧模拟不同的边界条件。采用哈密尔顿原理,结合耦合结构连接处的连续性条件,对锥环耦合结构振动系统的特征方程进行推导,进而获得耦合结构的固有频率和振动响应。通过与有限元法得到的结果进行对比,验证本文方法的正确性。同时,开展了相关参数化研究,分析了不同参数对复合材料双层锥壳与环板耦合结构振动响应的影响情况。

Abstract

In this paper, the mathematical model of the vibration characteristics of the coupled structure of composite double-layer conical shell and annular plate under different boundary conditions is established by the spectral geometry method, and the displacement tolerance function is set by the improved Fourier series. The virtual boundary spring technique is used to simulate various boundary conditions by setting three sets of linear springs and two sets of torsional springs. The Hamiltonian principle is used to derive the characteristic equations of the vibration system of the cone-ring coupled structure by combining the continuity conditions at the connection of the coupled structure, and then the natural frequency and vibration response of the coupled structure are obtained. The correctness of the method in this paper is verified by comparing with the results obtained by the finite element method. Meanwhile, a relevant parametric study is carried out to analyze the influence of varied parameters on the vibration response of the coupled structure of composite double-layer conical shell and ring plate.

关键词

耦合结构 / 谱几何法 / 复合材料 / 固有特性 / 振动响应

Key words

coupled structure / spectral geometry method / composite laminated material / inherent properties / vibration response.

引用本文

导出引用
史冬岩1,张颖1,2. 复合材料双层锥壳与环板耦合结构振动特性研究[J]. 振动与冲击, 2023, 42(12): 317-325
SHI Dongyan1, ZHANG Ying1,2. A study on vibration characteristics of a composite double-layer conical shell and annular plate coupling structure[J]. Journal of Vibration and Shock, 2023, 42(12): 317-325

参考文献

[1] Lee J H, Kim J. Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method [J]. Journal of Sound and Vibration, 2002, 251(2): 349-366.
[2] Rezaiee-Pajand M, Sobhani E, Masoodi A R. Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells [J]. Thin-Walled Structures, 2021, 159107272.
[3] 石先杰, 李春丽, 蒋华兵. 复杂边界条件下圆柱壳-环板耦合结构振动特性分析 [J]. 振动工程学报, 2018, 31(01): 118-124.
       SHI Xianjie,LI Chunli,JIANG Huabing. Vibration characteristics of an annular plate-cylindrical shell structure with complex boundary conditions [J]. Journal of Vibration Engineering, 2018, 31(1): 118-124.
[4] 吴江海, 尹志勇, 孙玉东, et al. 管路-圆柱壳耦合振动功率流与声辐射特性研究 [J]. 中国造船, 2021, 62(02): 145-153.
       WU Jianghai,YIN Zhiyong,SUN Yudong, et al. Research on vibration power flow and radiated sound of coupled vibration of pipeline and cylindrical shell[J].Shipbuilding of China,2021, 62(2): 145-153.
[5] Cao Y, Zhang R, Zhang W, et al. Vibration Characteristics Analysis of Cylindrical Shell-Plate Coupled Structure Using an Improved Fourier Series Method [J]. Shock and Vibration, 2018, 20189214189.
[6] 代路, 林原胜, 柳勇, et al. 复杂边界条件板壳耦合结构振动分析 [J]. 振动与冲击, 2018, 37(15): 270-276.
       DAI Lu,LIN Yuansheng,LIU Yong, et al. Vibration analysis for plate-shell coupled structures under complex boundary conditions[J]. Journal of Vibration and Shock, 2018, 37(15): 270-276.
[7] 石先杰, 李春丽, 任龙龙. 基于谱几何法的耦合板结构固有振动特性分析 [J]. 噪声与振动控制, 2018, 38(S1): 165-169.
       SHI Xianjie,LI Chunli,REN Longlong. Free vibration analysis of coupled plates based on spectro-geometric method[J]. Noise and Vibration Control, 2018, 38(Suppl.1): 165-169.
[8] He D, Shi D, Wang Q, et al. A unified power series method for vibration analysis of composite laminate conical, cylindrical shell and annular plate [J]. Structures, 2021, 29:305-327.
[9] Gao C, Pang F, Li H, et al. Steady and transient vibration analysis of uniform and stepped annular/circular plates based on FSDT [J]. Acta Mech, 2022, 1-22.
[10] Tornabene F, Viscoti M, Dimitri R, et al. Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry [J]. Composite Structures, 2021, 267:1-29.
[11] Guo C, Liu T, Bin Q, et al. Free vibration analysis of coupled structures of laminated composite conical, cylindrical and spherical shells based on the spectral-Tchebychev technique [J]. Composite Structures, 2022, 281:114965.
[12] Hu S, Zhong R, Wang Q, et al. Vibration analysis of closed laminate conical, cylindrical shells and annular plates using meshfree method [J]. Engineering Analysis with Boundary Elements, 2021, 133:341-361.
[13] Kwak S, Kim K, Jang P, et al. A meshfree local weak-form method for free vibration analysis of an open laminated cylindrical shell with elliptical section [J]. Composite Structures, 2021, 275: 114484.
[14] Qatu M S. Vibration of laminated shells and plates [M]. Elsevier, 2004.
[15] Reddy J N. Mechanics of laminated composite plates and shells : theory and analysis [M]. CRC Press, 2004.
[16] Toorani M H, Lakis A A. General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects [J]. Journal of Sound and Vibration, 2000, 237(4): 561-615.

PDF(1818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/