为测量弹性减振元件传递动刚度,基于ISO 10846系列标准中的间接法测量原理,设计弹性减振元件传递动刚度测量台架;针对给定的有效测试频率上、下限确定阻滞质量块;基于有效测试条件,得到解耦弹簧选取依据。利用建立的台架试验研究某型挠性接管传递动刚度,测量结果在200Hz~300Hz频段内出现非正常波动。建立测量台架的有限元分析模型,数值研究表明,该波动是由于阻滞质量块与解耦弹簧之间的整体式过渡板存在局部模态。因此,对测量台架进行优化设计,结果表明,采用非整体式过渡结构可有效消除测量台架对测试结果的影响。
Abstract
In order to measure the dynamic transfer stiffness of elastic vibration dampers. Based on the indirect method measurement principle in ISO 10846 series standards, the dynamic transfer stiffness measurement bench of elastic damping elements is designed. Determination of block mass for a given effective test frequency; selection of decoupling spring based on effective test conditions. Study on dynamic transfer stiffness of a certain type of flexible pipe by the established measuring bench. The measurement results show that the abnormal fluctuation occurs in the frequency band of 200 Hz ~ 300 Hz. A finite element analysis model of the measurement bench is established, and numerical studies show that the fluctuation is due to the local mode of the integral transition plate between the block mass and the decoupling spring. Therefore, the optimization design of measuring bench. The results show that the non-integral transition structure can effectively eliminate the influence of the measurement bench on the test results.
关键词
弹性元件 /
挠性接管 /
间接法 /
传递动刚度 /
台架设计
{{custom_keyword}} /
Key words
elastic element /
flexible pipe /
indirect method /
dynamic transfer stiffness /
bench design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 严济宽. 机械振动隔离技术[M]. 上海: 上海科学技术文献出版社, 1986: 428.
[2] 李世尧,张卫国,侯军占,等. 减振器动刚度特性研究[J]. 兵工学报. 2017, 38(11).
LI Shiyao, ZHANG WeiGuo, HOU JunZhan, et al. Research on dynamic stiffness of vibration isolator[J]. Acta Armamentarii. 2017, 38(11): 2274-2279.
[3] 尹镪,蔡成标,朱胜阳. 扣件刚度频变特性对轮轨振动噪声的影响[J]. 振动与冲击. 2017, 36(18): 231-237.
YIN Qiang, CAI ChengBiao, ZHU Sheng. Effect of the frequency-dependent stiffness of rail fasteners on the wheel-rail vibration noise[J]. Journal of Vibration and Shock,2017,36(18):231-237
[4] 刘海平,丁峰,马涛. 高刚度高阻尼结构试验研究[J]. 振动与冲击. 2020, 39(03): 186-192.
LIU Haiping, DING Feng, MA Tao. Tests for a high stiffness and high damping structure[J]. Journal of Vibration and Shock,2020,39(03):186-192.
[5] 王小燕. 隔振元件振动-声传递特性研究[D]. 合肥:合肥工业大学, 2011.
[6] TC I. ISO 10846-4:Acoustics and vibration - Laboratory measurement of vibro-acoustic transfer properties of resilient elements - Part 4: Dynamic stiffness of elements other than resilient supports for translatory motion[S]. 2003.
[7] 王勇,李志远,费标求. 弹性元件动刚度的直接法实验研究[J]. 四川兵工学报. 2015, 36(08): 92-95.
WANG Yong, LI Zhiyuan, FEI Biaoqiu. Direct method experiment research on dynamic stiffness of resilient element[J]. Journal of Sichuan Ordnance. 2015, 36(08): 92-95.
[8] 李显,陈俊杰,邱光琦,等. 基于橡胶热氧老化规律的压缩机隔振脚垫动态特性研究[J]. 振动与冲击. 2022, 41(01):271-278.
LI Xian, CHEN Junjie, QIU Guangqi, et al. Dynamic characteristics of compressor vibration isolation pad based on rubber thermal oxygen aging law[J]. Journal of Vibration and Shock,2022.41(01):271-278
[9] Rao M D, WIRKNER K J, GRUENBERG S. Dynamic characterization of automotive exhaust isolators[J]. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering. 2004, 218(8): 891-900.
[10] Loh S K, FARIS W F, HAMDI M, et al. Vibrational characteristics of piping system in air conditioning outdoor unit[J]. Science China Technological Sciences. 2011, 54(5): 1154-1168.
[11] Xia E, CAO Z, ZHU X, et al. A modified dynamic stiffness calculation method of rubber isolator considering frequency, amplitude and preload dependency and its application in transfer path analysis of vehicle bodies[J]. Applied acoustics. 2021, 175.
[12] TC I. ISO 10846-1:Acoustics and vibration - Laboratory measurement of vibro-acoustic transfer properties of resilient elements - Part 1: Principles and guidelines[S]. 2008.
[13] Herron D, Jones C, Thompson D, et al. Characterising the high-frequency dynamic stiffness of railway ballast[C]. Krakow, Poland,2009:2974-2981.
[14] Gao X, Feng Q, Wang A, et al. Testing research on frequency-dependent characteristics of dynamic stiffness and damping for high-speed railway fastener[J]. Engineering Failure Analysis. 2021, 129.
[15] Li Q, Dai B, Zhu Z, et al. Improved indirect measurement of the dynamic stiffness of a rail fastener and its dependence on load and frequency[J]. Construction and Building Materials. 2021, 304.
[16] Liu X, Thompson D, Squicciarini G, et al. Measurements and modelling of dynamic stiffness of a railway vehicle primary suspension element and its use in a structure-borne noise transmission model[J]. Applied Acoustics. 2021, 182.
[17] 计淘,陈大跃. 减振橡胶垫动态性能实验研究[J]. 噪声与振动控制. 2008(05): 56-59.
JI Tao, CHEN Dayue. Research on the dynamic characteristics of rubber absorbers[J]. Noise and Vibration Control. 2008(05): 56-59.
[18] 王晓明. 高速动车组橡胶减振元件动刚度测试与仿真[D]. 大连:大连交通大学, 2016.
[19] 孙大刚,诸文农,郑荣. 橡胶减振器复刚度动态特性的研究[J]. 农业机械学报. 1997(S1): 30-35.
SUN Dagang, ZHU Wennong, DENG Rong. Study on dynamic characteristics of complex stiffness for rubber vibration isolators[J]. Transactions of the Chinese Society of Agricultural Machinery. 1997(SI): 30-35.
[20] 黄其柏,师汉民. 机械振动系统分析建模测试对策上[M]. 武汉:华中科技大学出版社, 2013: 163.
[21] 陈刚,朱石坚. 挠性接管隔振效果检测试验装置合理性的讨论[J]. 海军工程大学学报. 2002(05): 57-59.
CHEN Gang, ZHU Shijian. Analysis of the rationality of the tester for flexible rubber pipe vibration- isolation efficiency with machine-electrotechnical analogism[J]. Journal of naval university of engineering. 2002(05): 57-59.
[22] Ooi L E, Ripin Z M. Dynamic stiffness and loss factor measurement of engine rubber mount by impact test[J]. Materials & Design. 2011, 32(4).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}