多边界条件下海洋温差能冷水管动力响应分析

张理1,谭健2,张玉龙3,徐进2,黄世苗1,段青峰2,段梦兰2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 59-68.

PDF(2074 KB)
PDF(2074 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 59-68.
论文

多边界条件下海洋温差能冷水管动力响应分析

  • 张理1,谭健2,张玉龙3,徐进2,黄世苗1,段青峰2,段梦兰2
作者信息 +

Dynamics response analysis of a cold-water pipe for ocean thermal energy conversion under different boundary conditions

  • ZHANG Li1,TAN Jian2,ZHANG Yulong3,XU Jin2,HUANG Shimiao1,DUAN Qingfeng2,DUAN Menglan2
Author information +
文章历史 +

摘要

深层冷海水提升过程中,超大流量会诱发冷水管振动和失稳。为了揭示冷海水提升过程的管道动力响应机理,基于Euler-Bernoulli梁模型,全面考虑管道所处海洋工况,建立动力响应计算分析模型,结合广义积分变换法,求解出多边界条件下振动方程的半解析解,给出了管道动力响应的时效解答。结果表明:结构阻尼仅减少在无外流下的管道振幅。内流流速对管道振幅的影响,在固支-自由边界条件下最大,在简支-加配重块边界条件下最小。但在外流作用下,内流流速仅对固支-加配重块边界条件的管道振幅影响显著。管道在不同边界条件下的固有频率和临界失稳流速不同。增大内流,管道在固支-固支和简支-简支的边界条件下的固有频率会逐渐减小直至为零。

Abstract

Large flow induces vibration and instability in pipe during conveying. To reveal the dynamic response of pipe conveying seawater, based on the Euler-Bernoulli beam model, the calculation and analysis model is established under marine condition. The semi-analytical solution of the vibration equation is solved by using Generalized Internal Transform Technique, and the time-dependent solution of structural dynamic response is given. The results show that structural damping only reduces the pipe amplitude in default of outflow. The effect of internal flow velocity on pipe amplitude is greatest under fixed-free boundary condition and least under pinned-with clump weight boundary condition. However, under the action of external flow, the internal flow velocity only influences the pipe amplitude under fixed-with clump weight boundary condition. The pipe has different natural frequency and critical velocity under different boundary conditions. With internal flow velocity increasing, the natural frequency of the pipe decreases gradually while approaching to zero.

关键词

海洋温差能 / 冷水管 / 广义积分变换法 / 固有频率 / 多边界条件 / 临界流速

Key words

cold water pipe / ocean thermal energy / generalized integral transformation technique / critical velocity / natural frequency / different boundary condition

引用本文

导出引用
张理1,谭健2,张玉龙3,徐进2,黄世苗1,段青峰2,段梦兰2. 多边界条件下海洋温差能冷水管动力响应分析[J]. 振动与冲击, 2023, 42(12): 59-68
ZHANG Li1,TAN Jian2,ZHANG Yulong3,XU Jin2,HUANG Shimiao1,DUAN Qingfeng2,DUAN Menglan2. Dynamics response analysis of a cold-water pipe for ocean thermal energy conversion under different boundary conditions[J]. Journal of Vibration and Shock, 2023, 42(12): 59-68

参考文献

[1] 苏佳纯,曾恒一,肖钢,王建丰,姜家骏.海洋温差能发电技术研究现状及在我国的发展前景[J].中国海上油气,2012,24(04):84-98.
Su JiaChun, Zeng HengYi, Xiao Gang, et al, Research status of ocean thermal energy conversion technology and its development prospect in China. China Offshore Oil and Gas, 2012,24(04):84-98.
[2] Adiputra, R., & Utsunomiya, T. (2019). Stability based approach to design cold-water pipe (CWP) for ocean thermal energy conversion (OTEC). Applied Ocean Research, 92, 101921.
[3] Adiputra, R., Utsunomiya, T., Koto, J., Yasunaga, T., & Ikegami, Y. (2019). Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia. Journal of Marine Science and Technology, 25(1), 48–68.
[4] Cao P, He J, Xiang S. Challenges and Experiences of Model Testing a Large Deep Water Intake Riser[J]. IBP1457-14, 2014.
[5] Varley R, Halkyard J, Johnson P, et al. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation[R]. Lockheed Martin Corporation, Manassas, VA (United States), 2014.
[6] Halkyard, J., Sheikh, R., Marinho, T., Shi, S., & Ascari, M. (2014, June 8). Current Developments in the Validation of Numerical Methods for Predicting the Responses of an Ocean Thermal Energy Conversion (OTEC) System Cold Water Pipe. ASME International Conference on Ocean. ASME,2014.
[7] MILLERA A, ROSARIOA T, ASCARIB M.Selection and validation of a minimum-cost cold water pipe material, configuration, and fabrication method for ocean thermal energy conversion (OTEC) systems, SAMPE
[8] A. Miller, M. Ascari, OTEC advanced composite cold-water pipe: final technical report[R].
[9] 司东洋,吕海宁,陈刚,肖龙飞.海洋温差能发电装置中冷水管动力性能分析[J].海洋工程,2019,37(03):120-127.
SI Dongyang, LV Haining, CHEN Gang, et, al. Dynamics of cold-water pipe in ocean thermal energy conversion. The Ocean Engineering, 2019,37(03):120-127
[10] Adiputra, R., & Utsunomiya, T. (2021). Linear vs non-linear analysis on self-induced vibration of OTEC cold water pipe due to internal flow. Applied Ocean Research, 110, 102610.
[11] GU J, AN C, LEVI C, et al. Prediction of Vortex-Induced Vibration of Long Flexible Cylinders Modeled by a Coupled Nonlinear Oscillator: Integral Transform Solution[J]. Journal of Hydrodynamics, 2012, 24(6): 888–898.
[12] AN C, SU J. Dynamic Behavior of Pipes Conveying Gas–Liquid Two-Phase Flow[J]. Nuclear Engineering and Design, 2015, 292: 204–212.
[13] AN C, SU J. Vibration behavior of marine risers conveying gas-liquid two-phase flow[C]. Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Newfoundland, Canada, 2015.
[14] Gu, J., Ma, T., & Duan, M. (2016). Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshenko beam model. Ocean Engineering, 114, 185–191.
[15] Liang, X., Zha, X., Jiang, X., Wang, L., Leng, J., & Cao, Z. (2018). Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary conditions. Ocean Engineering, 163, 183–190.
[16] Li, T., An, C., Liang, W., Duan, M., & Estefen, S. F. (2018). Semi-analytical solution for soil-constrained vibration of subsea free-spanning pipelines. Ships and Offshore Structures, 13(6), 666–676.
[17] Li, F., An, C., Duan, M., & Su, J. (2020). Combined damping model for dynamics and stability of a pipe conveying two-phase flow. Ocean Engineering, 195, 106683.
[18] 肖斌,周玉龙,高超,曹贻鹏,石双霞,刘志刚.考虑流体附加质量的输流管道振动特性分析[J].振动与冲击, 2021,40(15):182-188.
XIAO Bin, ZHOU Yulong, GAO Chao, et,al. Analysis of vibration characteristics of pipeline with fluid added mass. Journal of Vibration and Shock, 2021,40(15):182-188.
[19] 张子祥,王检耀,王鸿东,易宏.弹性约束充液管道的振动模态试验与预报研究[J].振动与冲击, 2021,40(15):1-10.
ZHANG Zixiang, WANG Jianyao, WANG Hongdong, YI Hong.Vibration modal tests and prediction of liquid filled pipeline with elastic constraints. Journal of Vibration and Shock, 2021,40(15):1-10.
[20] 柳博瀚,陈正寿,鲍健,崔振东.管道内流对海洋弹性管振动影响的数值仿真研究[J].振动与冲击,2020,39(17).
LIU Bohan, CHEN Zhengshou, BAO Jian, CUI Zhendong. Numerical simulation for effects of pipeline internal flow on vibration of flexible marine pipe. Journal of Vibration and Shock, 2020,39(17).
[21] 尚保佑,朱翔,李天匀,梁孝天.基于能量有限元法的损伤充液管道振动分析[J].振动与冲击, 2019,38(21):31-36.
SHANG Baoyou, ZHU Xiang, LI Tianyun, LIANG Xiaotiao. Vibration analysis of a damaged fluid-filled pipeline based on energy finite element method. Journal of Vibration and Shock, 2019,38(21):31-36.
[22] 朱晨光,徐思朋.功能梯度输流管的非线性自由振动分析[J].振动与冲击, 2018,37(14).
ZHU Chenguang, XU Sipeng. Nonlinear free vibration analysis of FG tubes conveying fluid. Journal of Vibration and Shock, 2018,37(14).
[23] Kuiper, G. L., & Metrikine, A. V. (2005). Dynamic stability of a submerged, free-hanging riser conveying fluid. Journal of Sound and Vibration, 280(3–5), 1051–1065.
[24] Chibueze, N. O., Ossia, C. V., & Okoli, J. U. (2016). On the Fatigue of Steel Catenary Risers. Strojniški Vestnik - Journal of Mechanical Engineering, 62(12), 751–756.
[25] An, C., & Su, J. (2014). Dynamic analysis of axially moving orthotropic plates: Integral transform solution. Applied Mathematics and Computation, 228, 489–507.
[26] Xu, M.-R., Xu, S.-P., & Guo, H.-Y. (2010). Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method. Computers & Mathematics with Applications, 60(3), 520–527.

PDF(2074 KB)

Accesses

Citation

Detail

段落导航
相关文章

/