针对含中介轴承的双转子系统,在考虑转子不平衡和中介轴承非线性因素的基础上,推导并建立了双转子系统的非线性动力学模型,研究了内外激励下双转子系统的非线性动力学特性。首先,针对建立的双转子-中介轴承系统非线性动力学模型,研究了双转子系统的幅频响应,获得了高低压转子的主共振特性;其次,考虑双转子系统非线性参数的影响,分析了内外激励下双转子系统的非线性动力学响应,通过分岔图、轴心轨迹图、庞加莱截面图、时域波形图和频谱图等,获得了不平衡影响下高低压转子在激励频率变化下的运动状态和频率特征;最后,分析了不平衡量对双转子系统非线性响应特性的影响,研究了不平衡量变化下高低压转子动力学特性的演变规律。研究结果可为双转子系统动力学特性设计和高低压转子故障诊断提供参考。
Abstract
The nonlinear dynamic model of a dual-rotor system with inter-shaft bearing is deduced and established, which the unbalance of dual-rotor system and the nonlinear factors of inter-shaft bearing are considered. The nonlinear dynamic characteristics of dual-rotor system subjected to internal and external excitations are studied. Firstly, the amplitude frequency responses of dual-rotor system are presented and the primary resonance characteristics of high and low pressure rotor are obtained, basing on the nonlinear dynamic model of dual-rotor system with inter-shaft bearing. Then, considering the influence of nonlinear parameters of dual-rotor system, the nonlinear dynamic responses of dual-rotor system are analyzed under internal and external excitations. Through the bifurcation diagram, axis orbit diagram, Poincare cross-sectional diagram, time-domain waveform diagram and spectrum diagram, the motion state and frequency characteristics of high and low pressure rotor under the influence of nonlinear parameters are obtained with the changes of excitation frequency. Finally, the influence of unbalance on the nonlinear response characteristics of dual-rotor system is analyzed, and the evolution law of dynamic characteristics of high and low pressure rotor under the change of unbalance is investigated. The research results can provide reference for the dynamic characteristic design of dual-rotor system and the fault diagnosis of high and low pressure rotor.
关键词
双转子系统 /
动力学 /
内外激励 /
中介轴承 /
非线性响应
{{custom_keyword}} /
Key words
dual-rotor system /
dynamics /
internal and external excitations /
inter-shaft bearing /
nonlinear response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Xiang L, Zhang Y, Hu A J. Crack characteristic analysis of multi-fault rotor system based on whirl orbits. Nonlinear Dynamics, 2019, 95(4): 2675–2690.
[2] FERRARIS G, MAISONNEUVE V, LALANNE M. Prediction of the dynamic behavior of non-symmetrical coaxial co-or counter-rotating rotors[J]. Journal of Sound and Vibration, 1996, 195(4): 649-666.
[3] 罗贵火, 胡绚, 杨喜关. 反向旋转双转子系统非线性分析[J]. 振动工程学报, 2009, 22(3): 268-273.
LUO Guihuo, HU Xuan, YANG Xiguan. Nonlinear dynamic performance analysis of counter-rotating dual-rotor system[J]. Journal of Vibration Engineering, 2009, 22(3): 268-273.
[4] 符毅强, 陈予恕, 侯磊, 等. 反向旋转双转子系统滞后特性分析[J]. 振动与冲击, 2015, 34(15): 23-27.
FU Yiqiang, CHEN Yushu, HOU Lei, et al. A counter-rotating dual-rotor system's hysteretic characteristics[J]. Journal of Vibration and Shock, 2015, 34(15): 23-27.
[5] 高朋, 侯磊, 陈予恕. 双转子-中介轴承系统非线性振动特性[J]. 振动与冲击, 2019, 38(15): 1-10.
GAO Peng, HOU Lei, CHEN Yushu. Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing[J]. Journal of Vibration and Shock, 2019, 38(15): 1-10.
[6] 李静, 曹树谦, 郭虎伦, 等. 考虑中介轴承弹流润滑时双转子系统振动特性[J]. 哈尔工业大学学报, 2021, 53(6): 138-147.
LI Jing, CAO Shuqian, GUO Hulun, et al. Vibration performance of dual rotor systems considering elastohydrodynamic lubrication of intershaft bearings[J]. Journal of Harbin Institute of technology, 2021, 53(6): 138-147.
[7] GAO P, HOU L, YANG R, et al. Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system[J]. Applied Mathematical Modelling, 2019, 68: 29-47.
[8] 贾延, 刘永葆, 王强, 等. 中介轴承游隙和刚度对双转子系统非线性特性的影响[J].兵器装备工程学报, 2021, 42(5):31-36.
JIA Yan, LIU Yongbao, WANG Qiang, et al. Influence of intermediate bearing clearance and rigidity on nonlinear characteristics of dual rotor system[J]. Journal of Ordnance Equipment Engineering, 2021, 42(5):31-36.
[9] GUSKOV M, SINOU J J, THOUVEREZ F. Experimental and numerical investigations of a dual-shaft test rig with inter-shaft bearing[J]. International Journal of Rotating Machinery, 2007, 128(2): 308-321.
[10] LU Z Y, ZHONG S, CHEN H Z, et al. Nonlinear response analysis for a dual-rotor system supported by ball bearing[J]. International Journal of Non-Linear Mechanics, 2021, 128: 103627.
[11] WANG N F, JIANG D X, XU H Z. Dynamic characteristics analysis of a dual-rotor system with inter-shaft bearing[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2017, 233(3): 1147-1158.
[12] JIN Y L, LU K, HUANG C X, et al. Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method[J]. Applied Mathematical Modelling, 2019, 75: 553-571.
[13] 胡绚. 反向旋转双转子系统动力学特性研究[D]. 南京: 南京航空航天大学, 2007.
[14] SHANMUGAM A, PADMANABHAN C. A fixed–free interface component mode synthesis method for rotor dynamic analysis[J]. Journal of Sound and Vibration, 2006, 297(3-5): 664-679.
[15] WANG N F, JIANG D X. Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study[J]. Mechanism and Machine Theory, 2018, 125: 207-219.
[16] GAO T, CAO S Q. Paroxysmal impulse vibration phenomena and mechanism of a dual–rotor system with an outer raceway defect of the inter-shaft bearing[J]. Mechanical Systems and Signal Processing, 2021, 157: 107730.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}