基于高速DIC的近场冲击下高强混凝土动态压缩性能研究

胡良鹏1,孙阳阳2,岳松林2,马林建2,陈徐东1,宁英杰3,宋小海4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 77-87.

PDF(3389 KB)
PDF(3389 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (12) : 77-87.
论文

基于高速DIC的近场冲击下高强混凝土动态压缩性能研究

  • 胡良鹏1,孙阳阳2,岳松林2,马林建2,陈徐东1,宁英杰3,宋小海4
作者信息 +

Investigation of dynamic compression performance of high-strength concrete under near-field impact based on high-speed DIC

  • HU Liangpeng1,SUN Yangyang2,YUE Songlin2,MA Linjian2,CHEN Xudong1,NING Yingjie3,SONG Xiaohai4
Author information +
文章历史 +

摘要

为了解近场冲击荷载作用下装配式预制桥梁结构高强混凝土材料的破坏特征及高应变率力学响应特征,采用100mm大直径霍普金森杆(split Hopkinson pressure bar,SHPB)对C60及C80两种高强度等级混凝土进行单轴冲击压缩试验。获得了混凝土的应力-应变曲线、动态弹性模量及动态增长因子等动态参数。利用高速DIC(digital image correlation)技术对混凝土表面应变场进行研究,分析了试样破坏过程中裂纹扩展过程。试验结果表明:在高应变率下,高强混凝土试件的动态压缩强度呈现明显的率效应,但其弹性模量保持恒定;对数函数模型能够较好地表征混凝土的动态强度演化模式;宏观上可以将观察到的破坏模式划分为四种模式:完整试样、轴向劈裂、混凝土爆裂及粉碎;高应变率下,裂缝演化不稳定性增大,其扩展速率随应变率的增大而增大。

Abstract

In order to gain insight into the damage characteristics and high strain rate mechanical response of high-strength concrete materials in assembled precast bridge structures under near-field impact loading, uniaxial impact compression tests were conducted on C60 and C80 high-strength concrete using a 100 mm large-diameter split Hopkinson pressure bar (SHPB). Dynamic parameters such as stress-strain curves, dynamic modulus of elasticity and dynamic increase factor of the concrete were obtained. The high-speed digital image correlation (DIC) technology was used to study the strain field on the concrete surface and analyze the crack propagation process during the failure process. The test results show that: the dynamic compressive strength of high-strength concrete specimens under high strain rate shows obvious strain rate effect, but its modulus of elasticity remains constant. And the logarithmic function model can better characterize the dynamic strength evolution pattern of high-strength concrete under high strain rate. Macroscopically, the observed damage patterns can be classified into four modes: intact specimen, axial splitting, concrete bursting and crushing. At high strain rates, the instability of crack and its expansion rate increases with strain rate increasing.

关键词

高速DIC / 动态压缩 / SHPB / 应变率效应 / 高强混凝土 / 裂缝扩展

Key words

High-speed DIC / Dynamic compression / SHPB / Strain rate effect / High strength concrete / Crack evolution

引用本文

导出引用
胡良鹏1,孙阳阳2,岳松林2,马林建2,陈徐东1,宁英杰3,宋小海4. 基于高速DIC的近场冲击下高强混凝土动态压缩性能研究[J]. 振动与冲击, 2023, 42(12): 77-87
HU Liangpeng1,SUN Yangyang2,YUE Songlin2,MA Linjian2,CHEN Xudong1,NING Yingjie3,SONG Xiaohai4. Investigation of dynamic compression performance of high-strength concrete under near-field impact based on high-speed DIC[J]. Journal of Vibration and Shock, 2023, 42(12): 77-87

参考文献

[1] 许子宜, 张子飏, 徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 288-296.
XU Z Y, ZHANG Z Y, XU T F. State-of-the-art review of prefabricated concrete bridge structures in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 288-296.
[2] 项贻强, 竺盛, 赵阳. 快速施工桥梁的研究进展[J]. 中国公路学报, 2018, 31(12): 1-27.
XIANG Y Q, ZHU S, ZHAO Y. Research progress of rapid construction bridge [J]. China journal of highway and transport, 2018, 31(12): 1-27.
[3] 蒋京慧. 近场爆炸荷载作用下高速铁路桥梁的易损性分析与可靠性评估[D]. 北京: 北京交通大学, 2021.
[4] FU Q, BU M, XU W, et al. Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths[J]. International Journal of Impact Engineering, 2021, 148: 103763.
[5] 金浏,余文轩,杜修力.应变率突增对混凝土动态拉伸破坏影响的细观模拟[J].振动与冲击,2021,40(02):39-48.
Jin L, Yu W X, Du X L. Microsimulation of dynamic tensile failure of concrete with sudden increase of strain rate [J]. Journal of Vibration and Shock, 201,40(02):39-48.
[6] KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete[J]. Construction and Building Materials, 2018, 190: 1264-1283.
[7] 王世鸣, 李夕兵, 宫凤强, 等. 静载和动载下不同龄期混凝土力学特性的试验研究[J]. 工程力学, 2013, 30(02): 143-149.
WANG S M, LI X B, GONG F Q, et al. Experimental study on mechanical properties of different ages concrete under staticand dynamic load[J]. Engineering Mechanics, 2013, 30(02): 143-149.
[8] YU W X, JIN L, Liu X, et al. Mesoscopic finite element analysis on dynamic direct tensile failure of lightweight aggregate concrete and corresponding size effect[J]. International Journal of Damage Mechanics, 2021, 31(3): 403-425.
[9] WANG Q F, LIU Y H, PENG G. Effect of water pressure on mechanical behavior of concrete under dynamic compression state[J]. Construction and Building Materials, 2016, 125: 501-509.
[10] YUAN C, CHEN W S, PHAM T M, et al. Influence of concrete strength on dynamic interfacial fracture behaviour between fibre reinforced polymer sheets and concrete[J]. Engineering Fracture Mechanics, 2020, 229: 106934.
[11] SHILKO E V, KONOVALENKO I S, KONOVALENKO I S. Nonlinear mechanical effect of free water on the dynamic compressive strength and fracture of high-strength concrete[J]. Materials, 2021, 14(14): 4011.
[12] AYHAN B, LALE E. Modeling strain rate effect on tensile strength of concrete using damage plasticity model[J]. International Journal of Impact Engineering, 2022, 162: 104132.
[13] MINH H L, KHATIR S, WAHAB M A, et al. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads[J]. Journal of Building Engineering, 2021, 44: 103239.
[14] 高光发, 郭扬波. 高强混凝土动态压缩试验分析[J]. 爆炸与冲击, 2019, 39(3): 60-69.
GAO G F, GUO Y B. Analysis of the dynamic compressive test of high strength concrete[J]. Explosion and Shock Waves, 2019, 39(3): 60-69.
[15] 邢化岛. 爆炸荷载作用下水泥砂浆试块裂纹扩展及数值模拟研究[D]. 安徽: 安徽理工大学, 2017.
[16] 王靖. 近距离爆炸下钢筋混凝土板局部破坏试验研究与数值模拟[D]. 天津: 天津大学, 2017.
[17] 刘聪, 戴云彤, 戴美玲, 等. 二维多相机全场数字图像相关变形测量方法[J]. 光学学报, 2016, 36(12): 104-112.
Liu C, DAI Y T, DAI M L, et al. Deformation Measurement by Two-Dimensional Multi-Camera Full-Field Digitallmage Correlation[J]. Acta Photonica Sinica, 2016, 36(12): 104-112.
[18] 王学滨, 杜亚志, 潘一山, 等. 基于数字图像相关方法的等应变率下不同含水率砂样剪切带观测[J]. 岩土力学, 2015, 36(03): 625-632.
WANG X B, DU Y Z, PAN Y S, et al. Shear zone observation of sand samples with different moisture content under constant strain rate based on digital image correlation Method [J]. Rock and Soil Mechanics, 2015, 36(03): 625-632.
[19] 张俊, 陈红鸟, 王德强. 基于DIC技术的混凝土往复荷载下断裂力学特性研究[J]. 应用力学学报, 2021, 38(04): 1636-1643.
ZHANG J, CHEN H N, WANG D Q. Study on fracture properties of concrete under cyclic loading by using DIC technique [J]. Chinese Journal of Applied Mechanics, 2021, 38(04): 1636-1643.
[20] 徐纪鹏, 董新龙, 付应乾, 等. 不同加载边界下混凝土巴西劈裂过程及强度的DIC实验分析[J]. 力学学报, 2020, 52(03): 864-876.
XU J P, DONG X L, FU Y Q, et al. Experimental analysis of process and tensile strength for concrete Brazilian splitting test with different loading boundaries by DIC method [J]. Chinese Journal of Theoretical and Applied Mechani,2020,52(03):864-876.
[21] XING H Z, ZHANG Q B, RUAN D, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation[J]. International Journal of Impact Engineering, 2018, 113: 61-72.
[22] 章超, 徐松林, 王鹏飞. 基于数字图像相关方法对冲击载荷下泡沫铝全场变形过程的测试[J]. 实验力学, 2013, 28(5): 629-634.
ZHANG C, XU S L, WANG P F. Test of Aluminum Foam Deforming Process under Impact Load Based on Digital Image Correlation Method [J]. Experimental Mechanics, 2013, 28(5): 629-634.
[23] ZHOU Z L, CAI X, LI X B, et al. Dynamic Response and Energy Evolution of Sandstone Under Coupled Static–Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications[J]. Rock Mechanics and Rock Engineering, 2020, 53(3):1305-1331.
[24] 徐振洋, 杨军, 郭连军. 爆炸聚能作用下混凝土试件劈裂的高速3D DIC实验[J]. 爆炸与冲击, 2016, 36(03): 400-406.
XU Z Y, YANG J, GUO L J. Study of the splitting crack propagation morphology using high-speed 3D DIC [J]. Explosion and Shock Waves, 2016, 36(03): 400-406.
[25] 邢灏喆, 王明洋, 范鹏贤, 等. 基于高速3D-DIC技术的砂岩动力特性粒径效应研究[J]. 爆炸与冲击, 2021, 41(11): 46-57.
XING H Z, WANG M Y, FAN P X, et al. Grain-size effect on dynamic behavior of sandstone based on high-speed 3D-DIC technique[J]. Explosion and Shock Waves, 2021, 41(11): 46-57.
[26] Davies E, Hunter S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155-179.
[27] DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar[J]. Rock mechanics and rock engineering, 2010, 43(6): 657-666.
[28] 周晓峰. 基于散斑数字图像相关的平面全场应变测量方法及应用 [D]. 深圳:华南理工大学, 2012.
[29] WANG S S, ZHANG M H, QUEK S T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading[J]. Construction and Building Materials,2012,31: 1-11
[30] 刘俊良, 许金余, 任韦波. 高强混凝土在冲击荷载下的力学性能[J]. 硅酸盐通报, 2016, 35(01): 261-266+274.
LIU J L, XU J Y, REN W B. Mechanical properties of high strength concrete under impact loading [J]. Bulletin of the Chinese Ceramic Society, 2016, 35(01): 261-266+27.
[31] Committee Euro-International du Beton. CEB-FIP model code 1990[S]. Redwood Books, Trowbridge, Wiltshire, UK, 1993.
[32] ZHOU X Q, HAO H. Mesoscale modelling of concrete tensile failure mechanism at high strain rates[J]. Computers and Structures, 2008, 86(21-22): 2013-2026.

PDF(3389 KB)

Accesses

Citation

Detail

段落导航
相关文章

/