刚性滑板-复位橡胶免承压支座隔震结构振动台试验

李武杰1,2,赖正聪1,2,封云龙1,2,白羽1,2,周立超1,张田庆3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 108-117.

PDF(4335 KB)
PDF(4335 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 108-117.
论文

刚性滑板-复位橡胶免承压支座隔震结构振动台试验

  • 李武杰1,2,赖正聪1,2,封云龙1,2,白羽1,2,周立超1,张田庆3
作者信息 +

Shaking table tests for rigid sliding plate-resetting rubber bearing isolation structure

  • LI Wujie1,2, LAI Zhengcong1,2, FENG Yunlong1,2, BAI Yu1,2, ZHOU Lichao1, ZHANG Tianqing3
Author information +
文章历史 +

摘要

研发了一种新型自复位滑移摩擦隔震支座,该支座竖向支承和水平复位元件相互独立分离,摩擦耗能和自复位功能分别由刚性滑块和弹性橡胶完成。阐述了该支座基本构造及工作原理,提出并检验了该型支座的理论恢复力模型。设计并制作了三层装配式钢框架足尺模型,选用两条天然波及一条人工波,对基础隔震及非隔震结构进行7度(0.15g)多遇、设防及罕遇地震的地震模拟振动台试验。结果表明:新型支座的各组成部分本构关系独立明确、传力路径清晰,便于组装更换;采用该支座的隔震结构在各水准地震作用下的地震反应明显小于非隔震结构,隔震效果随试验地震动峰值加速度的增大而趋于显著;隔震层滞回曲线饱满,可有效吸收耗散地震能量,各支座始终保持较好的竖向稳定性,未出现倾覆提离现象,震后结构隔震层复位良好。

Abstract

A new type of self-reset sliding friction isolation bearing is developed, in which the vertical support and horizontal reset elements are separated from each other independently, and the friction energy dissipation and self-reset function are completed by rigid slider and elastic rubber respectively. The basic structure and working principle of the bearing are expounded, and the theoretical restoring force model of this type of bearing is put forward and tested. A full-scale model of three-story prefabricated steel frame is designed and made. two natural waves and one artificial wave are selected to carry out 7-degree (0.15g) earthquake simulation shaking table tests on base-isolated and non-isolated structures. The results show that the constitutive relation of each component of the new bearing is independent and clear, the force transfer path is clear, and it is easy to assemble and replace, and the seismic response of the isolated structure with this bearing is obviously smaller than that of the non-isolated structure under the action of various levels. the isolation effect tends to be significant with the increase of the peak acceleration of the test ground motion. The hysteretic curve of the isolation layer is full, which can effectively absorb and dissipate seismic energy, each bearing always maintains good vertical stability, there is no overturning and lifting phenomenon, and the structural isolation layer replaces well after the earthquake.

关键词

基础隔震 / 滑移摩擦支座 / 自复位 / 足尺模型 / 地震模拟振动台试验

Key words

base-isolated / sliding friction bearing / self-reset / full-scale model / shaking table test of seismic simulation

引用本文

导出引用
李武杰1,2,赖正聪1,2,封云龙1,2,白羽1,2,周立超1,张田庆3. 刚性滑板-复位橡胶免承压支座隔震结构振动台试验[J]. 振动与冲击, 2023, 42(15): 108-117
LI Wujie1,2, LAI Zhengcong1,2, FENG Yunlong1,2, BAI Yu1,2, ZHOU Lichao1, ZHANG Tianqing3. Shaking table tests for rigid sliding plate-resetting rubber bearing isolation structure[J]. Journal of Vibration and Shock, 2023, 42(15): 108-117

参考文献

[1] 周福霖. 工程结构减震控制[M]. 北京: 地震出版社, 1997: 24.
[2] 朱玉华, 吕西林. 滑移摩擦隔震系统在多向地面运动作用下的试验研究[J].地震工程与工程振动, 2002, 22(05): 77-84.
ZHU Yuhua, LU Xilin. Shaking table tests of model building with sliding isolation system under multi-direction ground motions[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(05): 77-84.
[3] 曹万林, 周中一, 王  卿, 等. 农村房屋新型隔震与抗震砌体结构振动台试验研究[J]. 振动与冲击, 2011, 30(11): 209-213.
CAO Wanlin, ZHOU zhongyi, WANG Qing, et al. Experimental study on base vibration isolation and anti-seismic masonry structure in rural areas by shaking table test[J]. Journal of Vibration and Shock, 2011, 30(11): 209-213.
[4]  Calvi P M ,  Calvi G M . Historical development of friction-based seismic isolation systems[J]. Soil Dynamics & Earthquake Engineering, 2018, 106:14-30.
[5]  Guéraud R, Noël-Leroux J.-P, LIVOLANT M, et al. Seismic isolation using sliding-elastomer bearing pads[J]. Nuclear Engineering and Design, 1985, 84(3): 363-377.
[6] 魏陆顺, 周福霖, 刘文光. 组合基础隔震在建筑工程中的应用[J]. 地震工程与工程振动, 2007, 27(02): 158-163.
WEI Lushun, ZHOU Fulin, LIU Wenguang. Application of combined base isolation to buildings[J]. Earthquake Engineering and Engineering Vibration, 2007(02): 158-163.
[7]  Kelly J M . Aseismic base isolation: review and bibliography[J]. Soil Dynamics & Earthquake Engineering, 1986, 5(4):202-216.
[8]  Engineer M ,  Kelly J M . Sliders and tension controlled reinforced elastomeric bearings combined for earthquake isolation[J]. Earthquake Engineering & Structural Dynamics, 2010, 19(3):333-344.
[9] 周锡元,韩  淼,李大望,等. 并联和串联基础隔震体系地震反应的某些特征[J].工程抗震, 1995 (4):1-5.
ZHOU Xiyuan,HAN Miao,LI Dawang,et al. 1995 (4):1-5.
[10] 吕西林, 朱玉华, 施卫星, 等. 组合基础隔震房屋模型振动台试验研究[J]. 土木工程学报, 2001, 34(02): 43-49.
LU Xilin, ZHU Yuhua, SHI Weixing, et al. Shaking table test on building models with combined isolation system[J]. China Civil Engineering Journal, 2001, 34(02): 43-49.
[11] 朱玉华, 吕西林. 组合基础隔震系统地震反应分析[J]. 土木工程学报, 2004, 37(04): 76-81.
ZHU Yuhua , LU Xilin. Analysis of the seismic response of the combined isolating system[J]. China Civil Engineering Journal, 2004, 37(04): 76-81.
[12] 杨树标. 复合隔震结构地震反应的简化计算[J]. 世界地震工程, 2001, 17(02): 65-69.
YANG Shubiao. Simplified calculation of seismic response analysis of structure with compound seismic isolation devices[J]. World Information on Earthquake Engineering. 2001, 17(02): 65-69.
[13] 杨树标, 贾剑辉, 申彦利. 复合隔震结构的研究与应用[C]// 防震减灾工程研究与进展—全国首届防震减灾工程学术研讨会论文集, 2004: 247-251.
[14] 杨树标, 曾  江, 贾剑辉. 并联复合隔震体系非线性性能的试验研究[J].工程抗震与加固改造, 2011, 33(03): 38-41.
YANG Shubiao , CENG jiang, JIA Jianhui. Study on test nonlinear performance in parallel composite isolation system[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(03): 38-41.
[15] 徐  义, 卢文胜. 并联组合基础隔震体系的简化计算方法及试验分析[J]. 结构工程师, 2011, 27(S1): 294-299.
XU Yi , LU Wensheng. Seismic testing and a simplified calculating method for parallel-composite base isolation system[J]. Structural Engineers, 2011, 27(S1): 294-299.
[16] 荣  强, 程文瀼. 橡胶-摩擦并联隔震体系的弹塑性时程分析[J]. 工业建筑, 2007, 37(02): 47-49.
RONG Qiang, CHENG Wenrang. Elastoplastic time-history analysis of rubber-friction parallel isolation system[J]. Industrial Construction, 2007, 37(02): 47-49.
[17] 橡胶支座第1部分: 隔震橡胶支座试验方法: GB/T 20688.1-2014[S]. 北京: 中国建筑工业出版社, 2014.
Rubber bearings-Part1: Seismic-protection isolators test method: GB/T 20688.1-2014[S]. Beijing: China Construction Industry Press, 2014.
[18] 橡胶支座第5部分: 建筑隔震弹性滑板支座: GB/T 20688.5-2014[S]. 北京: 中国建筑工业出版社, 2014.
Rubber bearings-Part5: Elastic sliding seismic-protection isolatior for buildings[S]. Beijing: China Construction Industry Press, 2014.
[19] 钢结构设计标准: GB 50017-2017[S]. 北京: 中国建筑工业出版社, 2017.
Standard for design of steel structures: GB 50017-2017[S]. Beijing: China Construction Industry Press, 2017.
[20] 建筑隔震设计标准: GB/T 51408-2021[S]. 北京:中国计划出版社, 2021.
Standard for seismic isolation design of building: GB/T 51408-2021[S]. Beijing:China Plan Press, 2021.
[21] 建筑抗震设计规范: GB 50011-2010[S]. 北京:中国建筑工业出版社, 2011.
Code for seismic design of buildings: GB50011-2010[S]. Beijing:China Construction Industry Press, 2011.

PDF(4335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/