基于改进快速峭度图的轴承故障诊断方法研究

闫云雪,许传诺,程学珍,李继明

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 118-128.

PDF(4666 KB)
PDF(4666 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 118-128.
论文

基于改进快速峭度图的轴承故障诊断方法研究

  • 闫云雪,许传诺,程学珍,李继明
作者信息 +

Bearing fault diagnosis method based on improved fast kurtosis graph

  • YAN Yunxue, XU Chuannuo, CHENG Xuezhen, LI Jiming
Author information +
文章历史 +

摘要

针对传统快速峭度图在轴承故障诊断中,通过计算滤波信号的包络峭度确定频带范围容易受到随机脉冲干扰的问题,本文提出一种基于改进快速峭度图的轴承故障诊断方法。首先运用自相关算法、改进谱幅值调制(improved spectral amplitude modulation ,ISAM)算法对包络信号进行处理,获取修正信号并以其频谱峭度衡量冲击响应的强度;然后以修正信号谱峭度代替传统快速峭度图中的包络峭度,得到可降低各频带随机干扰的改进峭度图;最后通过对3组信噪比不同的仿真信号、两组轴承实验信号的平方包络谱故障诊断情况进行对比分析,验证该方法的有效性和稳定性。通过与原始快速峭度图、功率谱峭度图、ISAM法三种方法对比,验证该方法的优越性。对比结果表明,本文所提方法可有效降低随机脉冲的影响,实现轴承故障特征频率的准确提取。

Abstract

Aiming at the problem that the frequency band range determined by calculating the envelope kurtosis of the filtered signal is easily disturbed by random pulses in the traditional Fast Kurtogram in bearing fault diagnosis, a bearing fault diagnosis method based on Improved Fast Kurtogram is proposed in this paper. Firstly, the envelope signal is processed by using autocorrelation algorithm and Improved Spectral Amplitude Modulation (ISAM) algorithm to obtain the modified signal, and the intensity of impact response is measured by its spectrum kurtosis. Then the envelope kurtosis in the traditional Fast Kurtogram is replaced by the modified signal spectrum kurtosis to obtain the Improved Fast Kurtogram which can reduce the random interference in each frequency band. Finally, the validity and stability of the proposed method are verified by comparing and analyzing the square envelope spectrum fault diagnosis of three groups of simulation signals with different Signal to Noise Ratio(SNR) and two groups of bearing experimental signals. And the superiority of this method is verified by comparing with the Original Fast Kurtogram, Power spectrum Kurtogram and ISAM. The comparison results show that the proposed method can effectively reduce the influence of random pulse and achieve accurate extraction of bearing fault feature frequency.

关键词

轴承故障诊断 / 改进快速峭度图 / 修正信号谱峭度 / ISAM算法

Key words

bearing fault diagnosis / Improved Fast Kurtogram / the modified signal spectrum kurtosis / improved spectral amplitude modulation (ISAM) algorithm

引用本文

导出引用
闫云雪,许传诺,程学珍,李继明. 基于改进快速峭度图的轴承故障诊断方法研究[J]. 振动与冲击, 2023, 42(15): 118-128
YAN Yunxue, XU Chuannuo, CHENG Xuezhen, LI Jiming. Bearing fault diagnosis method based on improved fast kurtosis graph[J]. Journal of Vibration and Shock, 2023, 42(15): 118-128

参考文献

[1] Roper T, Bayer C, Buchner R, et al. Innovations in the development of miniature ball bearings-expanding the performance limits of dental turbine bearings [J]. Tribologie und Schmierungstechnik, 2020, 67(2): 15-22.
[2] Lu N Y, Jiang B, Meng X F, et al. Diagnosis, diagnosticability analysis, and test point design for multiple faults based on multisignal modeling and blind source separation [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(1): 137-148.
[3] Xu K, Li Y G, Liu C Q, et al. Advanced data collection and analysis in data-driven manufacturing process [J]. Chinese Journal of Mechanical Engineering, 2020, 33(3): 40-60.
[4] 刘文朋, 杨绍普, 李  强, 等. 一种自适应共振解调方法及其在铁路轴承故障诊断中的应用[J]. 振动与冲击, 2021, 40(18): 86-93.
LIU Wen-peng, YANG Shao-pu, LI Qiang, et al. Adaptive resonance demodulation method and its application in the fault diagnosis of railway bearings [J]. Journal of Vibration and Shock, 2021, 40(18): 86-93.
[5] Guo Y, Zhao L, Wu X, et al. Tooth root crack detection of planet and sun gears based on resonance demodulation and vibration separation [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(1): 65-75.
[6] Zhang C G, Wang Y, Deng W. Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation [J]. Entropy, 2020, 22(7): 864-870.
[7] 谷朝健, 马增强, 王建东, 等. 多通道相关-自适应轴承故障诊断方法[J]. 航空动力学报, 2018, 33(7): 1750- 1757.
GU Chao-jian, MA Zeng-qiang, WANG Jian-dong, et al. Adaptive bearing fault diagnosis method of multi-channel correlation [J]. Journal of Aerospace Power, 2018, 33(7): 1750-1757.
[8] Antoni J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems & Signal Processing, 2007, 21(1): 108-124.
[9] Xu Y G, Tian W K, Zhang K, et al. Application of an enhanced fast kurtogram based on empirical wavelet transform for bearing fault diagnosis [J]. Measurement Science and Technology, 2019, 30(3): 035001.
[10] 孟  宗, 刘子涵, 吕  蒙. 基于改进奇异值分解滤波和谱峭度的滚动轴承故障诊断[J]. 中国机械工程, 2020, 31(20): 2420-2428.
MENG Zong, LIU Zi-han, LV Meng. Fault diagnosis for Rolling Bearings Based on Improved Singular Value Decomposition and Spectral Kurtosis [J]. China Mechanical Engineering, 2020, 31(20): 2420-2428.
[11] 钟先友, 田红亮, 赵春华, 等. 基于迭代滤波和快速峭度图的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2018, 37(9): 190-195.
ZHONG Xian-you, TIAN Hong-liang, ZHAO Chun-hua, et al. Feature extraction for rolling bearings’ weak faults based on iterative filtering and fast kurtogram [J]. Journal of Vibration and Shock, 2018, 37(9): 190-195.
[12] 李翠省, 廖英英, 刘永强. 基于EEMD和参数自适应VMD的高速列车轮对轴承故障诊断[J]. 振动与冲击, 2022, 41(1): 68-77.
LI Cui-sheng, LIAO Ying-ying, LIU Yong-qiang. Fault diagnosis of wheelset bearing of high-speed train based on EEMD and parameter adaptive VMD [J]. Journal of Vibration and Shock, 2022, 41(1): 68-77.
[13] Liu Z C, Yang S P, Liu Y Q, et al. Adaptive correlated kurtogram and its applications in wheelset-bearing system fault diagnosis [J]. Mechanical Systems and Signal Processing, 2021, 154: 107511.
[14] Zhang K, Xu Y, Liao Z, et al. A novel fast entrogram and its applications in rolling bearing fault diagnosis [J]. Mechanical Systems and Signal Processing, 2021, 154: 107582.
[15] 明安波, 李  政, 张  炜, 等. 线性峭度图及其在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2020, 39(4): 27-37.
MING An-bo, LI Zheng, ZHANG Wei, et al. Linear kurtosis diagram and its application to rolling bearing fault diagnosis [J]. Journal of Vibration and Shock, 2020, 39(4): 27-37.
[16] Zhang X, Wan S, He Y, et al. Teager energy spectral kurtosis of wavelet packet transform and its application in locating the sound source of fault bearing of belt conveyor [J]. Measurement, 2021, 173: 108367.
[17] Moshrefzadeh A, Fasana A. The autogram: an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis [J]. Mechanical Systems and Signal Processing, 2018, 105(12): 294-318.
[18] 张海峰, 陈丙炎, 宋冬利. 基于改进峭度图法的滚动轴承故障诊断[J]. 城市轨道交通研究, 2019, 22(2): 41-47.
ZHANG Hai-feng, CHEN Bing-yan, SONG Dong-li. Bogie bearing fault diagnosis based on improved kurtogram [J]. Urban Mass Transit, 2019, 22(2): 41-47.
[19] Dwyer R. Detection of non-Gaussian signals by frequency domain kurtosis estimation [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing. Boston, 1983, 8: 607-610.
[20] Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [J]. Mechanical Systems & Signal Processing, 2004, 20(2): 308-331.
[21] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
[22] Moshrefzadeh A, Fasana A, Antoni J. The spectral amplitude modulation: a nonlinear filtering process for diagnosis of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2019, 132(6): 253-276.
[23] 刘文朋, 杨绍普, 李  强, 等. 一种增强的谱幅值调制方法及其在复杂干扰下滚动轴承故障诊断中的应用[J].振动工程学报, 2021, 34(5): 1064-1075.
LIU Wen-peng, YANG Shao-pu, LI Qiang, et al. An enhanced spectral amplitude modulation method and its application to rolling bearing fault diagnosis under complex interference [J]. Journal of Vibration Engineering, 2021, 34(5): 1064-1075.
[24] 郑  直, 李显泽, 朱  勇, 等. 基于SGMD-Autogram的液压泵故障诊断方法研究[J]. 振动与冲击, 2020, 39(23): 234-241.
ZHENG Zhi, LI Xian-ze, ZHU Yong, et al. Hydraulic pump fault diagnosis method based on SGMD-autogram [J]. Journal of Vibration and Shock, 2020, 39(23): 234-241.
[25] Dong W, Peter W T, Kwok L T. An enhanced kurtogram method for fault diagnosis of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2013, 35: 176-199.
[26] Ericsson S, Grip N, Johansson E, et al. Towards automatic detection of local bearing defects in rotating machines [J]. Mechanical Systems & Signal Processing, 2005, 19(3): 509-535.
[27] 贺利芳, 朱  伟, 张天骐. 分段非对称随机共振系统微弱信号检测[J]. 振动与冲击, 2022, 41(5): 114-122.
HE Li-fang, ZHU Wei, ZHANG Tian-qi. Weak signal detection for piecewide asymmetric stochastic resonance system [J]. Journal of Vibration and Shock, 2022, 41(5): 114-122.
[28] Wang B, Lei Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings [J]. IEEE Transactions on Reliability, 2018, 69(1): 1-12.
[29] 雷亚国, 韩天宇, 王  彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6.
LEI Ya-guo, HAN Tian-yu, WANG Biao, et al. XJTU-SY rolling bearing accelerated life test datasets: a tutorial [J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6.
[30] 唐贵基, 王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报, 2016, 29(4): 638-648.
TANG Gui-ji, WANG Xiao-long. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing [J]. Journal of Vibration Engineering, 2016, 29(4): 638-648.
[31] Wade A S, Robert B R. Rolling element bearing diagnostics using the case western reserve university data: A benchmark study [J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100-131.
[32] 张天瑞, 李金洋. 基于自适应VMD-KPCA特征提取与SSA-SVM方法的滚动轴承故障诊断[J]. 机械设计, 2022, 39(07): 63-73.
ZHANG Tian-rui, LI Jin-yang. Research on fault diagnosis of rolling bearings based on adaptive VMD-KPCA feature extraction and SSA-SVM method [J]. Journal of Machine Design, 2022, 39(07): 63-73.
[33] 俞惠惠, 郑近德, 潘海洋, 等. 基于自适应变分模态提取的低速重载滚动轴承故障诊断方法[J].振动与冲击, 2022, 41(11): 65-71.
YU Hui-hui, ZHENG Jin-de, PAN Hai-yang, et al. Fault diagnosis method for low speed and heavy load rolling bearings based on adaptive variational mode extraction [J]. Journal of Vibration and Shock, 2022, 41(11): 65-71.
[34] 胡  超, 沈宝国, 谢中敏. 基于EMD-FastICA与DGA-ELM网络的轴承故障诊断方法[J]. 太阳能学报, 2021, 42(10): 208-219.
HU Chao, SHEN Bao-guo, XIE Zhong-min. Fault diagnosis method of bearing based on EMD-FastICA and DGA-ELM network [J]. Chinese Journal of Solar Energy, 2021, 42(10): 208-219.

PDF(4666 KB)

354

Accesses

0

Citation

Detail

段落导航
相关文章

/