分数阶导数是阻尼器本构模型的常用表达,相关结构动力响应的解析解答难以获得,高效时域数值求解具有重要实践意义。本文针对应用广泛的Riemann-Liouville型分数阶阻尼结构,引入基于多步预估-校正机制的Adams-Moulton算法计算分数阶导数,继而在各离散时刻构造等效线性定常动力系统,最终结合Newmark-β数值积分方案建立各时刻求解显式公式,实现高精度动力响应的直接快速求解。以单自由度振子受简谐荷载和单位脉冲为例,对比考察解析解、两种直接数值解法和本文方法,验证本文方法的高精度和稳定性。最后以多层阻尼减震结构受地震作用为例,对比考察迭代数值算法、工程近似算法和本文方法,进一步验证本文方法在计算精度和计算效率上的综合优势,揭示工程应用潜力。
Abstract
Fractional derivative is a comon expression of the constitutive model of a damper. The analytical solution of the dynamic response of the relevant structure is difficult to obtain, and an efficient time-domain numerical solution is of practical importance. In this paper, for the widely used Riemann-Liouville type fractionally damped structure, the Adams-Moulton algorithm based on multi-step predictor-corrector mechanism is introduced to calculate the fractional derivatives, and then the equivalent linear and time-invariant dynamical system is constructed at each discrete time instant, and finally the Newmark-β numerical integration scheme is combined to establish the explicit computation formula at each time instant to achieve direct and rapid solution of high-accuracy dynamic responses. Taking a SDOF oscillator subjected to harmonic loading and unit impulse as an example, the analytical solution, two direct numerical solutions, and the present method are compared to verify the high accuracy and stability of the present method. Finally, for the example of a multi-layer damped structure subjected to seismic excitation, the iterative numerical algorithm, the engineering approximation algorithm, and the present method are compared and investigated to further verify the combined advantages of the present method in terms of computational accuracy and computational efficiency, and to reveal the potential of engineering applications.
关键词
分数阶阻尼 /
动力分析 /
预估-校正 /
等效线性系统
{{custom_keyword}} /
Key words
fractional damper /
dynamic analysis /
predictor-corrector /
equivalent linear system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 党选举, 彭慧敏, 姜辉, 伍锡如. 基于模糊分数阶PID的开关磁阻电机直接瞬时转矩控制[J]. 振动与冲击, 2018, 37(23): 104-110.
DANG Xuanju, PENG Huimin, JIANG Hui, WU Xiru. Direct instantaneous torque control of a switched reluctance motor based on fuzzy fractional order PID [J]. Journal of Vibration and Shock, 2018, 37(23): 104-110.
[2] Baleanu D, Jleli M, Kumar S, et al. A fractional derivative with two singular kernels and application to a heat conduction problem [J]. Advances in Difference Equations, 2020, 2020(1): 252.
[3] Bagley R L, Torvik P J. On the fractional calculus model of viscoelastic behavior [J]. Journal of Rheology, 1986, 30(1): 133-155.
[4] Zhu G, Xiong Y, Li Z, et al. A fractional-order model on the dynamic mechanical behavior of magnetorheological elastomers [J]. Smart Materials and Structures, 2020, 29(2): 025020.
[5] Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures [J]. AIAA Journal, 1985, 23(6): 918-925.
[6] Gaul L, Klein P, Kempfle S. Impulse response function of an oscillator with fractional derivative in damping description [J]. Mechanics Research Communications, 1989, 16(5): 297-305.
[7] Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order [M]. San Diego: Academic Press, 1974: 140-147.
[8] Spanos P D, Evangelatos G I. Response of a non-linear system with restoring forces governed by fractional derivatives—Time domain simulation and statistical linearization solution [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(9): 811-821.
[9] 冼剑华, 苏成. 分数阶导数系统非平稳随机振动灵敏度分析的时域显式方法[J/OL]. 振动工程学报: 1-10 [2022-06-22].
XIAN Jianhua, SU Cheng. Explicit time-domain method for sensitivity analysis of nonstationary random vibration of systems with fractional derivatives [J/OL]. Journal of Vibration Engineering: 1-10 [2022-06-22].
[10] Odibat Z M. Computing eigenelements of boundary value problems with fractional derivatives [J]. Applied Mathematics and Computation, 2009, 215(8): 3017-3028.
[11] Koh C G, Kelly J M. Application of fractional derivatives to seismic analysis of base‐isolated models [J]. Earthquake Engineering & Structural Dynamics, 1990, 19(2): 229-241.
[12] Shokooh A, Suárez L. A comparison of numerical methods applied to a fractional model of damping materials [J]. Journal of Vibration and Control, 1999, 5(3): 331-354.
[13] Singh M P, Chang T S, Nandan H. Algorithms for seismic analysis of MDOF systems with fractional derivatives [J]. Engineering Structures, 2011, 33(8): 2371-2381.
[14] Kougioumtzoglou I A, dos Santos K R M, Comerford L. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements [J]. Mechanical Systems and Signal Processing, 2017, 94: 279-296.
[15] dos Santos K R M, Kougioumtzoglou I A, Spanos P D. Hilbert transform–based stochastic averaging technique for determining the survival probability of nonlinear oscillators [J]. Journal of Engineering Mechanics, 2019, 145(10): 04019079.
[16] dos Santos K R M, Brudastova O, Kougioumtzoglou I A. Spectral identification of nonlinear multi-degree-of-freedom structural systems with fractional derivative terms based on incomplete non-stationary data [J]. Structural Safety, 2020, 86: 101975.
[17] Luo H, Ikago K. Unifying causal model of rate‐independent linear damping for effectively reducing seismic response in low‐frequency structures [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(9): 2355-2378.
[18] 周云. 粘弹性阻尼减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006: 65-68.
ZHOU Yun. Design of Viscoelastic all Damped Structures [M]. Wuhan: Wuhan University of Technology Press, 2006: 65-68.
[19] Ou J P, Long X, Li Q S. Seismic response analysis of structures with velocity-dependent dampers [J]. Journal of Constructional Steel Research, 2007, 63: 628-638..
[20] Kasai K, Munshi J A, Lai M L, et al. Viscoelastic damper hysteretic model: Theory, experiment, and application [C]. Proceeding of ATC-I7-I Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Applied Technology Council, San Francisco, California, 1993: 521-532.
[21] Fu Y, Kasai K. Comparative Study of Frames Using Viscoelastic and Viscous Dampers [J]. Journal of Structural Engineering, 1998. 124(5), 513–522.
[22] Chen W, Sun H, Li X. Fractional Derivative Modeling in Mechanics and Engineering [M]. Beijing: Science Press, 2022: 29-31.
[23] Galeone L, Garrappa R. Fractional Adams–Moulton methods [J]. Mathematics and Computers in Simulation, 2008, 79(4), 1358–136.
[24] Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations [J]. Nonlinear Dynamics, 2002, 29(1): 3-22.
[25] Soon C M, Coimbra C F M, Kobayashi M H. The variable viscoelasticity oscillator [J]. Annalen der Physik, 2005, 14(6): 378-389.
[26] Zayernouri M, Matzavinos A. Fractional Adams–Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system [J]. Journal of Computational Physics, 2016, 317: 1-14.
[27] 廖宁, 陈太聪. 含分数阶阻尼器结构地震响应的迭代求解[J]. 华南地震, 2021, 41(2): 105-112.
LIAO Ning, CHEN Taicong. Direct numerical solution of seismic response of structures with fractional dampers [J]. South China Journal of Seismology, 2021, 41(2): 105-112.
[28] Suárez L, Shokooh A. Response of systems with damping materials modeled using fractional calculus [J]. Applied Mechanics Reviews, 1995, 48(11S): S118-S126.
[29] Suárez L E, Shokooh A. An eigenvector expansion method for the solution of motion containing fractional derivatives [J]. Journal of Applied Mechanics 1997, 64(3): 629-635.
[30] Chopra A K. Dynamics of Structures: Theory and Application to Earthquake Engineering (4th ed.) [M]. New Jersy: Prentice Hall, 2006: 171-174.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}