钨合金破片侵彻2024铝靶的数值模拟研究

夏靖雯1,2,陈智刚2,顾敏辉1,2,孟凡高3,赵太勇2,王维占2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 156-162.

PDF(3272 KB)
PDF(3272 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 156-162.
论文

钨合金破片侵彻2024铝靶的数值模拟研究

  • 夏靖雯1,2,陈智刚2,顾敏辉1,2,孟凡高3,赵太勇2,王维占2
作者信息 +

Numerical simulation for tungsten alloy fragments penetrating 2024 aluminum target

  • XIA Jingwen1,2, CHEN Zhigang2, GU Minhui1,2, MENG Fangao3, ZHAO Taiyong2, WANG Weizhan2
Author information +
文章历史 +

摘要

研究93W钨合金破片对铝合金靶板的弹道极限(V_50)影响规律,对战斗部毁伤元威力设计具有重要意义。本文通过弹道冲击试验获取了钨合金立方体破片、球形破片在〖90〗^°着角的情况下,对4mm2024铝靶的侵彻弹道极限(V_50)。基于数值模拟与试验结果的一致性,分析了钨合金破片形状、质量对V_50的影响规律。结果表明,两种形状破片的侵彻V_50均随着破片质量的增加而减小;在〖90〗^°着角时,立方体破片的侵彻V_50较低于球形破片,且两者V_50差值随着破片质量的增大而增大。其中,立方体破片由于着靶姿态的变化导致V_50存在着波动区间,随着破片质量增加,V_50的波动区间相对增加,且立方体破片侵彻V_50小于球形破片V_50的概率也随之增加。

Abstract

Ballistic impact tests were conducted to obtain the ballistic limit (V_50) of tungsten alloy cube breakers and spherical breakers against a 4mm2024 aluminium target at an angle of impact of 〖90〗^°.Based on the agreement between numerical simulation and experimental results,the influence of tungsten alloy chip shape and mass was analysed.The results show that the intrusion V_50 of both shapes decreases with the increase of the fragment mass;At 〖90〗^° impact angle,the penetration V_50 of cube fragments is lower than the spherical fragments,and the difference between the two V_50 increases with the increase of fragment mass.The V_50 fluctuation interval of the cubic fragment due to the change of the target attitude increases as the fragment mass increases,and the probability that the intrusion V_50 of the cubic fragment is smaller than the spherical fragment increases.

关键词

V_50 / 弹道极限 / 侵彻姿态 / 数值模拟

Key words

V_50 / The ballistic limit / Penetration gesture / Numerical simulation

引用本文

导出引用
夏靖雯1,2,陈智刚2,顾敏辉1,2,孟凡高3,赵太勇2,王维占2. 钨合金破片侵彻2024铝靶的数值模拟研究[J]. 振动与冲击, 2023, 42(15): 156-162
XIA Jingwen1,2, CHEN Zhigang2, GU Minhui1,2, MENG Fangao3, ZHAO Taiyong2, WANG Weizhan2. Numerical simulation for tungsten alloy fragments penetrating 2024 aluminum target[J]. Journal of Vibration and Shock, 2023, 42(15): 156-162

参考文献

[1]李龙,吕金明,严安,宋友宝,段海龙,周德敬.铝合金装甲材料的应用及发展[J].兵器材料科学与工程,2017,40(06):105-113.DOI:10.14024/j.cnki.1004-244x.20171102.004.
  Li Long, Lu Jinming, Yan An, Song Youbao, Duan Hailong, Zhou Dejing. Application and development of aluminum alloy armor materials[J].Weapon Materials Science and Engineering, 2017,40(06):105-113.DOI:10.14024/j.cnki.1004-244x.20171102.004.
[2]Liu Yingbin,Yin Chufan,Hu Xiaoyan,Yuan Meini. Ballistic limit velocity of tungsten alloy spherical fragment penetrating Ti/Al3Ti-laminated composite target plates[J]. Advanced Composites Letters,2020,29:
[3]徐豫新,王树山,伯雪飞,梁勇.钨合金球形破片对低碳钢的穿甲极限[J].振动与冲击,2011,30(05):192-195.
  XU Yuxin,WANG Shushan,BOBO Xuefei,LIANG Yong. Armor piercing limit of tungsten alloy spherical fragment on mild steel[J].Vibration and Shock,2011,30(05):192-195.
[4]毛亮,王华,姜春兰,李明.钨合金球形破片侵彻陶瓷/DFRP复合靶的弹道极限速度[J].振动与冲击,2015,34(13):1-5.
  MAO Liang,WANG Hua,JIANG Chunlan,LI Ming. Ballistic limit velocity of tungsten alloy spherical fragmentation invading ceramic/DFRP composite target[J].Vibration and Shock,2015,34(13):1-5.
[5]P Karthick,K Ramajeyathilagam. Numerical Study on Ballistic Resistance of Thin Aluminium Plate Subjected to Variable Diameter Projectile Impacts[J]. International Journal of Vehicle Structures & Systems,2020,12(1):
[6]P.K. Pradhan,N.K. Gupta,Suhail Ahmad,P.P. Biswas,Dayanand. Numerical Investigations of Spherical Projectile Impact on 4 mm Thick Mild Steel Plate[J]. Procedia Engineering,2017,173:
[7]Hong D,Li W B,Zheng Y,et al.Experimental research on tungsten alloy spherical fragments penetrating into carbon fiber target plate[J].Latin American Journal of Solids and Structures, 2021, 18(5).
[8]Fu-lin Zhu,Yang Chen,Gui-li Zhu.Numerical simulation study on penetration performanceof depleted Uranium(DU) alloy fragments[J].Defence Technology,2021,17(01):50-55.
[9]李金福,智小琦,范兴华.钨球及六棱钨柱破片侵彻Q235叠层靶特性研究[J].火炮发射与控制学报,2021,42(02):28-33+39.DOI:10.19323/j.issn.1673-6524.2021.02.005.
  Li Jinfu, Zhi Xiaoqi, Fan Xinghua.Research on the characteristics of tungsten ball and hexagonal tungsten column fragments penetrating Q235 laminated target[J].Journal of Artillery Launch and Control,2021,42(02):28-33+39.DOI:10.19323 /j.issn.1673-6524.2021.02.005.
[10]赵小峰.破片质量对钨合金破片侵彻威力的影响[J].科学技术与工程,2020,20(10):3967-3971.
  Zhao Xiaofeng.Influence of fragment quality on penetration power of tungsten alloy fragments[J].Science Technology and Engineering,2020,20(10):3967-3971.
[11]康爱花,陈智刚,付建平.球形破片侵彻高强度装甲钢的弹道极限速度计算[J].中北大学学报(自然科学版),2015,36(06):647-651.
  Kang Aihua, Chen Zhigang, Fu Jianping.Calculation of ballistic limit velocity of spherical fragments penetrating high-strength armored steel[J].Journal of North University of China(Natural Science Edition),2015,36(06):647-651.
[12]任新联,苏健军,王堃,张俊锋.立方体破片侵彻多层铝合金靶板的有限元分析[J].科学技术与工程,2011,11(17):3877-3881.
  Ren Xinlian, Su Jianjun, Wang Kun, Zhang Junfeng.Finite Element Analysis of Cube Fragments Penetrating Multilayer Aluminum Alloy Targets[J].Science Technology and Engineering,2011,11(17):3877-3881.
[13]吴晓凤,陈小伟,姚勇.不同形状的预制钨破片正穿甲钢靶的破孔能力分析[J].兵工自动化,2017,36(05):57-61.
  Wu Xiaofeng,Chen Xiaowei,Yao Yong.Analysis of hole-piercing ability of prefabricated tungsten fragments with different shapes[J].Ordnance Industry Automation,2017,36(05):57-61.
[14]石志杰,姜春兰.不同形状预制破片的速度衰减特性及极限贯穿速度分析[J].弹箭与制导学报,2004(S2):312-314.
Shi Zhijie, Jiang Chunlan.Velocity Attenuation Characteristics and Limit Penetration Velocity Analysis of Prefabricated Fragments with Different Shapes[J].Journal of Bullets, Arrows and Guidance,2004(S2):312-314.
[15]王轩,路明建,邓云飞.立方体破片对铝合金板冲击的数值仿真[J].中国机械工程,2018,29(23):2887-2894.
   Wang Xuan, Lu Mingjian, Deng Yunfei.Numerical Simulation of Cube Fragment Impact on Aluminum Alloy Plate[J].China Mechanical Engineering,2018,29(23):2887-2894.
[16]梅志远,朱锡.利用MSC/DYTRAN程序仿真分析导弹战斗部立方体破片的侵彻威力[J].海军工程大学学报,2002(02):39-42.
   Mei Zhiyuan, Zhu Xi.Using MSC/DYTRAN program to simulate and analyze the penetration power of cube fragments of missile warhead[J].Journal of Naval University of Engineering,2002(02):39-42.

PDF(3272 KB)

Accesses

Citation

Detail

段落导航
相关文章

/