结合SVR响应面与粒子群优化的有限元模型修正

何子豪1,2,吴邵庆 1,2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 163-172.

PDF(2225 KB)
PDF(2225 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 163-172.
论文

结合SVR响应面与粒子群优化的有限元模型修正

  • 何子豪1,2,吴邵庆 1,2,3
作者信息 +

Finite element model modification combining SVR response surface and PSO

  • HE Zihao1,2, WU Shaoqing1,2,3
Author information +
文章历史 +

摘要

提出了一种模型修正方法,可以在不依赖模型灵敏度的前提下,利用较少的计算量实现对结构有限元模型的参数修正。该方法首先构建代理模型替代结构有限元模型,通过计算少量样本点,训练支持向量回归机预测参数所对应的响应;其次,以结构固有频率的残差为目标函数,利用粒子群优化算法实现全局寻优求解,得到修正后的有限元模型参数;进一步,以带孔平板为试验研究对象,基于实测数据验证了所提方法的有效性,并讨论不同参数、样本点数等对模型修正精度的影响;最后,用某卫星结构模型修正算例证明了本文方法相对基于灵敏度分析的方法在计算耗时上的优势。本研究旨在为具有复杂参数-响应特征的结构模型修正提供技术支持。

Abstract

A model updating method independent of model sensitivity is proposed in which the parameter of the structural finite element model can be updated with less computational effort. Surrogate model is firstly established to replace the structural finite element model, and the support vector regression can be trained to predict the response corresponding to the parameters via the calculation on a small number of sample points; Secondly, taking the residual of natural frequency as objective function, the particle swarm algorithm is used to achieve the global optimization, which leads to the updated parameters of the finite element model; Then, a plate with holes is taken as the experimental research object, and the effectiveness of the proposed method is verified based on the measurement data. The influence of different parameters and different number of sample points, etc. on the model updating accuracy are further discussed. Finally, a satellite structural model updating example is given to prove the advantages of the proposed method on computational efficiency over the method based on sensitivity analysis. This research work aims to provide technical support for the modification of structural models with complex parameter-response characteristics.

关键词

有限元模型修正 / 支持向量回归机 / SVR响应面 / 粒子群优化 / 试验研究

Key words

finite element model updating / support vector regression / SVR response surface / particle swarm optimization / experimental research

引用本文

导出引用
何子豪1,2,吴邵庆 1,2,3. 结合SVR响应面与粒子群优化的有限元模型修正[J]. 振动与冲击, 2023, 42(15): 163-172
HE Zihao1,2, WU Shaoqing1,2,3. Finite element model modification combining SVR response surface and PSO[J]. Journal of Vibration and Shock, 2023, 42(15): 163-172

参考文献

[1]  袁昭旭, 于开平. 高温环境下结构动力学模型修正方法研究[J]. 振动与冲击, 2017, 36(15): 171-180.
YUAN Zhao-xu, YU Kai-ping. Structural dynamic model updating under high temperature environment[J]. Journal of Vibration and Shock, 2017, 36(15): 171-180.
[2]  Cao Z, FEI Q, Jiang D, et al. Dynamic sensitivity-based finite element model updating for nonlinear structures using time-domain responses[J]. International Journal of Mechanical Sciences, 2020, 184: 105788.
[3]  秦福溶, 姜东, 曹芝腑, 等. 基于灵敏度分析的复合材料组分参数识别方法[J]. 复合材料学报, 2018, 35(12): 3350-3359.
QIN Fu-rong, JIANG Dong, CAO Zhi-fu, et al. Parameter identification for components of composites based on sensitivity analysis[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3350-3359.
[4]  姜东, 费庆国, 吴邵庆. 基于区间分析的不确定性结构动力学模型修正方法[J]. 振动工程学报, 2015, 28(03): 352-358.
JIANG Dong, FEI Qing-guo, WU Shao-qing. Updating of structural dynamics model with uncertainty based on interval analysis[J]. Journal of Vibration Engineering, 2015, 28(03): 352-358.
[5]  陈喆, 何欢, 陈国平, 等. 考虑不确定性因素的有限元模型修正方法研究[J]. 振动工程学报, 2017, 30(06): 921-928.
CHEN Zhe, HE Huan, CHEN Guo-ping, et al. The research of finite element model updating method considering the uncertainty[J]. Journal of Vibration Engineering, 2017, 30(06): 921-928.
[6]  Friswell M I, Mottershead J E, Ahmadian H. Finite–element model updating using experimental test data: parametrization and regularization[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1778): 169-186.
[7]  Yuan Z, Yu K, Bai Y. A multi-state model updating method for structures in high-temperature environments[J]. Measurement, 2018, 121: 317-326.
[8]  展铭, 郭勤涛, 岳林, 等. 使用应变模态和遗传算法的有限元模型修正方法[J]. 振动.测试与诊断, 2018, 38(05): 974-978.
ZHAN Ming, GUO Qin-tao, YUE Lin, et al. Finite Element Model Updating Using Strain Mode and Genetic Algorithm-Based Method[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38(05): 974-978.
[9]  杜大华, 贺尔铭, 李磊. 改进模拟退火算法的喷管动力学模型修正[J]. 宇航学报, 2018, 39(06): 632-638.
DU Da-hua, HE Er-ming, LI Lei. A Dynamics Model Updating Method of Nozzle Based on Improved Simulation Annealing Algorithm[J]. Journal of Astronautics, 2018, 39(06): 632-638.
[10] 于开平, 刘荣贺. 多族群粒子群优化算法飞行器结构模型修正[J]. 振动与冲击, 2013, 32(17): 79-83.
YU Kai-ping,LIU Rong-he. Model updating of a spacecraft structure based on MRPSO[J]. Journal of Vibration and Shock, 2013, 32(17): 79-83.
[11] 秦玉灵, 孔宪仁, 罗文波. 基于响应面方法的碳纤维蜂窝板有限元模型修正[J]. 振动与冲击, 2011, 30(07): 71-76.
QIN Yu-ling, KONG Xian-ren, LUO Wen-bo. RSM-based FEM model updating for a carbon fiber honeycomb sandwich panel[J]. Journal of Vibration and Shock, 2011, 30(07): 71-76.
[12] Xia Z, Li A, Li J, et al. Model updating of an existing bridge with high-dimensional variables using modified particle swarm optimization and ambient excitation data[J]. Measurement, 2020, 159: 107754.
[13] 方圣恩, 张秋虎, 林友勤, 等. 参数不确定性估计的随机响应面模型修正方法[J]. 振动工程学报, 2016, 29(04): 594-602.
FANG Sheng-en, ZHANG Qiu-hu, LIN You-qin, et al. Stochastic response surface model updating for estimating parameter uncertainties[J]. Journal of Vibration Engineering, 2016, 29(04): 594-602.
[14] Jin S S, Jung H J. Sequential surrogate modeling for efficient finite element model updating[J]. Computers & Structures, 2016, 168: 30-45.
[15] Cheng X X, Fan J H, Xiao Z H. Finite element model updating for the Tsing Ma Bridge tower based on surrogate models[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2022, 41(2): 500-518.
[16] 陈喆, 何欢, 陈国平. 基于增广SVM的结构动力学模型修正方法研究[J]. 振动与冲击, 2017, 36(15): 194-202.
CHEN Zhe, HE Huan, CHEN Guo-ping. Structural dynamic model updating based on augmented SVM[J]. Journal of Vibration and Shock, 2017, 36(15): 194-202.
[17] 张勇, 侯之超, 赵永玲. 基于频响函数截断奇异值响应面的有限元模型修正[J]. 振动工程学报, 2017, 30(03): 341-348.
ZHANG Yong, HOU Zhi-chao, ZHAO Yong-lin. Finite element model updating based on response surface of the truncated singular values of frequency response functions[J]. Journal of Vibration Engineering, 2017, 30(03): 341-348.
[18] Zhang Y, Hou Z. A model updating method based on response surface models of reserved singular values[J]. Mechanical Systems and Signal Processing, 2018, 111: 119-134.
[19] 彭珍瑞, 郑捷, 白钰, 等. 一种基于改进MCMC算法的模型修正方法[J]. 振动与冲击, 2020, 39(04): 236-245.
PENG Zhen-rui, ZHENG Jie, BAI Yu, et al. A model updating method based on an improved MCMC algorithm[J]. Journal of Vibration and Shock, 2020, 39(04): 236-245.
[20] Chen Z, Zhao Q. A dynamic model updating method with thermal effects based on improved support vector regression[J]. Applied Sciences, 2021, 11(17): 8025.
[21] 姜东, 吴邵庆, 史勤丰, 等. 基于各向同性本构关系薄层单元的螺栓连接参数识别[J]. 振动与冲击, 2014, 33(22): 35-40.
JIANG Dong, WU Shao-qing, SHI Qin-feng, et al. Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship[J]. Journal of Vibration and Shock, 2014, 33(22): 35-40.
[22] Bach J, Schroeder P J. Pairwise testing: A best practice that isn't. The 22nd Annual Pacific Northwest Software Quality Conference[C]. 2004: 180-196.
[23] 吴邵庆, 尹健, 何子豪, 等. 卫星结构基础加速度激励及界面力识别试验研究[J]. 宇航学报, 2022, 43(3):319-327.
WU Shao⁃qing, YIN Jian, HE Zi⁃hao, et al. Experimental study on base acceleration excitation and interface load identification on a satellite structure[J]. Journal of Astronautics, 2022, 43(3):319-327.

PDF(2225 KB)

445

Accesses

0

Citation

Detail

段落导航
相关文章

/