内置障碍网络颗粒阻尼器的耗能机理研究

胡寅1,昝浩1,郭有松2,梅港伟1,夏兆旺1,彭子龙1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 199-209.

PDF(4252 KB)
PDF(4252 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 199-209.
论文

内置障碍网络颗粒阻尼器的耗能机理研究

  • 胡寅1,昝浩1,郭有松2,梅港伟1,夏兆旺1,彭子龙1
作者信息 +

Energy dissipation mechanism of particle damper with built-in obstacle network

  • HU Yin1, ZAN Hao1, GUO Yousong2, MEI Gangwei1, XIA Zhaowang1, PENG Zilong1
Author information +
文章历史 +

摘要

传统颗粒阻尼器在振动强度较高的情况下存在能量损耗效率低的缺陷,通过实验发现在颗粒阻尼器中内置三维网络结构(障碍网络)可以改善上述难题。为了探究内置障碍网络对颗粒运动状态及能量损耗的影响机理,采用离散元方法建立内置障碍网络的颗粒阻尼器数值模型并开展实验验证,研究振动参数和填充比对有无障碍网络颗粒阻尼器的耗能影响,探讨颗粒阻尼器内部颗粒碰撞及能量损耗空间分布特性。结果表明,在30~160Hz、2.5~25g振动条件及50%~90%填充比条件下,障碍网络能够改变颗粒群体运动行为以及增强其能量耗散性能;使原本对能量耗散几乎没有贡献的颗粒产生剧烈运动,参与到能量耗散过程;障碍网络使底部空间颗粒群体在一个振动周期内产生倍频的碰撞特性,极大增加能量损耗。

Abstract

Traditional particle dampers have the defects of low energy loss efficiency under the condition of high and low vibration intensity. Through experiments, it is found that three-dimensional network structure (obstacle network) built into particle dampers can improve the above problems. To explore the built-in barriers network of particle motion and the energy loss mechanism, the influence of the discrete element method is adopted to establish the internal obstacles network of particle dampers numerical model and experimental verification, the vibration parameters and filling ratio on particle dampers have barrier-free network of energy dissipation effect, discusses particle dampers inside particle collision and energy loss distribution characteristics. The results show that the barrier network can change the movement behavior of particles and enhance their energy dissipation under the conditions of 30-160Hz, 2-25g vibration and 50%-90% filling ratio. The particles, which had no contribution to the energy dissipation, moved violently and participated in the energy dissipation process. The barrier network makes the particle population in the bottom space produce double frequency collision characteristics in one vibration cycle, which greatly increases the energy loss.

关键词

颗粒阻尼 / 障碍网络 / 损耗因子 / 能量损耗 / 颗粒流态

Key words

Particle damping / Obstacle network / Loss factor / Energy loss / Particle flow status

引用本文

导出引用
胡寅1,昝浩1,郭有松2,梅港伟1,夏兆旺1,彭子龙1. 内置障碍网络颗粒阻尼器的耗能机理研究[J]. 振动与冲击, 2023, 42(15): 199-209
HU Yin1, ZAN Hao1, GUO Yousong2, MEI Gangwei1, XIA Zhaowang1, PENG Zilong1. Energy dissipation mechanism of particle damper with built-in obstacle network[J]. Journal of Vibration and Shock, 2023, 42(15): 199-209

参考文献

[1] Veeramuthuvel P, Shankar K, Sairajan K K. Application of particle damper on electronic packages for spacecraft[J]. Acta Astronautica, 2016, 127: 260-270.
[2] 段勇,陈前,林莎.颗粒阻尼对直升机旋翼桨叶减振效果的试验[J].航空学报,2009,30(11):2113-2118.
Duan Yong, Chen Qian, Lin Sha. Experimental study on vibration reduction effect of particle damping on helicopter rotor blade [J]. Acta aeronautica et astronautica sinica,2009,30(11):2113-2118.
[3] 叶林昌,肖望强,沈建平,等.基于粒子阻尼的动力装置基座减振优化设计研究[J].振动与冲击, 2021, 40 (03) :40-47.
Ye Lin-Chang, XIAO Wang-qiang, Shen Jian-ping,et al. Vibration Reduction Optimization Design of Power Plant Base Based on Particle Damping [J]. Journal of Vibration and Shock, 2021, 40 (03): 40-47.
[4] Lu Z, Liao Y, Huang Z. Stochastic response control of particle dampers under random seismic excitation[J]. Journal of Sound and Vibration, 2020, 481: 115439.
[5] Jin J, Kim H, Koh H I, et al. Railway noise reduction by periodic tuned particle impact damper with bounce and pitch-coupled vibration modes[J]. Composite Structures, 2022: 115230.
[6] Duvigneau F, Koch S, Woschke E, et al. An effective vibration reduction concept for automotive applications based on granular-filled cavities[J]. Journal of Vibration and Control, 2018, 24(1): 73-82.
[7] Xiao W, Xu Z, Bian H, et al. Lightweight heavy-duty CNC horizontal lathe based on particle damping materials[J]. Mechanical Systems and Signal Processing, 2021, 147: 107127.
[8] Zhang K, Chen T, Wang X, et al. Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper[J]. Journal of Sound and Vibration, 2016, 364: 30-43.
[9] 张凯,陈天宁,王小鹏.非阻塞性颗粒阻尼器内部的颗粒莱顿弗罗斯特现象[J].西安交通大学学报,2016,50(08):15-19+44.
Zhang Kai, Chen Tian-ning, Wang Xiao-peng. Granular leidenfrost effect in a non-obstructive particle damper[J].  Journal of xi 'an jiao tong university,2016,50(08):15-19+44.
[10] 苏凡,张航,尹忠俊.颗粒物质流变学行为和材料参数对颗粒阻尼器能量耗散的影响[J].振动与冲击,2018,37(08):238-244.
Su Fan, Zhang Hang, Yin Zhong-jun. Effect of Rheological Behavior and Material Parameters on Energy Dissipation of particle Damper [J]. Journal of vibration and shock, 2018,37 (08):238-244.
[11] 杜妍辰,张洪源,林俊文.碰撞阻尼器中颤振发生的恢复系数区间研究[J].振动与冲击,2021,40(24):154-162+229.
Du Yanchen, ZHANG Hongyuan, Lin Junwen. Flutter recovery coefficient in the collision dampers interval study [J]. Journal of vibration and shock, 2021, 40 (24) : 154-162 + 229.
[12] 薛程,许祥曦,苏战发,等.基于稳态能量流法识别半主动颗粒阻尼损耗因子的实验[J].航空动力学报,2020,35(01):60-65.
Xue Cheng, Xu Xiangxi, Su Zhanfa, et al. Based on steady flow method to identify the semi-active particle damping loss factor experiment [J]. Journal of aerospace power, 2020, 35 (01) : 60-65.
[13] 胡溧,唐喆,徐贤,等.颗粒阻尼器损耗因子外因特性研究[J].中国机械工程,2015,26(15):2005-2009.
Hu Li, Tang Zhe, Xu Xian, et al. Particle damper loss factor external characteristic study [J]. China mechanical engineering, 2015, 26 (15) : 2005-2009.
[14] Romdhane M B, Bouhaddi N, Trigui M, et al. The loss factor experimental characterisation of the non-obstructive particles damping approach[J]. Mechanical Systems and Signal Processing, 2013, 38(2): 585-600.
[15] 毛宽民,陈天宁,黄协清.非阻塞性微颗粒阻尼机理的散体元研究[J]. 西安交通大学学报,1999,33(9):80-84.
MAO Kuan-min, Chen Tian-ning, Huang Xie-qing. Mechanism of non-obstructive particle damping with discrete element method [J]. Journal of xi 'an jiaotong university, 1999 (9) : 80-84.
[16] Duan Y, Chen Q. Simulation and experimental investigation on dissipative properties of particle dampers[J]. Journal of Vibration and Control, 2011, 17(5): 777-788.
[17] Masmoudi M, Job S, Abbes M S, et al. Experimental and numerical investigations of dissipation mechanisms in particle dampers[J]. Granular Matter, 2016, 18(3): 1-11.
[18] Bai X M, Keer L M, Wang Q J, et al. Investigation of particle damping mechanism via particle dynamics simulations[J]. Granular Matter, 2009, 11(6): 417-429.
[19] Wong C X, Daniel M C, Rongong J A. Energy dissipation prediction of particle dampers[J]. Journal of sound and vibration, 2009, 319(1-2): 91-118.
[20] Darabi B, Rongong J A. Polymeric particle dampers under steady-state vertical vibrations[J]. Journal of Sound and Vibration, 2012, 331(14): 3304-3316.
[21] 李健,刘璐,严颖,黄力成.基于离散单元法的颗粒阻尼耗能减振特性研究[J].计算力学学报,2013,30(05):664-670.
Li Jian, Liu Lu, Yan Ying, Huang Licheng. Based on particle damping vibration energy consumption characteristics of discrete element method research [J]. Journal of computational mechanics, 2013, 30 (5) : 664-670.
[22] 周宏伟.颗粒阻尼及其控制的研究与应用[D].南京航空航天大学,2008.
Zhou Hongwei. Research and Application of Particle Damping and Its Control [D]. Nanjing University of Aeronautics and Astronautics,2008
[23] 刘艳,梁要,陈亚楠,等.颗粒阻尼减振特性研究[J].噪声与振动控制, 2021, 41(04):13-18.
Liu Yan, Liang Yao, Chen Yannan, Li Qiu Tong, et al.  Research on damping damping characteristics of particles[J]. Noise and Vibration Control, 2021, 41(04):13-18.
[24] 肖望强,卢大军,宋黎明,等.基于颗粒阻尼的矿用自卸车振动舒适性[J].交通运输工程学报,2019,19(06):111-124.
Xiao Wang-qiang, Lu Dajun, Song Liming, et al. Mining equipments based on particle damping vibration comfort [J]. Journal of transportation engineering, 2019, 12 (6) : 111-124.
[25] 肖望强,余少炜,林昌明,等.基于颗粒阻尼的PCB动力学与电路联合设计研究[J].振动与冲击,2019,38(10):124-132.
Xiao Wang-qiang, Yu Shaowei, Lin Changming, et al. Dynamics associated with circuit PCB design based on particle damping study [J]. Journal of vibration and shock, 2019, 38 (10) : 124-132.
[26] 段永强,尹忠俊,陈兵.颗粒运动学行为对阻尼器耗能特性影响的研究[J].振动与冲击,2020,39(04):215-221.
Duan Yong-qiang, Yin Zhong-jun, Chen Bing. Particle kinematics behavior for the research on the effects of characteristics of damper [J]. Journal of vibration and shock, 2020, 33(4) : 6, 215-221.
[27] 姚冰. 颗粒阻尼建模仿真及工程应用[D].南京航空航天大学,2013.
Yao Bing. Modeling and Simulation of Particle Damping and Engineering Application [D]. Nanjing University of Aeronautics and Astronautics,2013.
[28] Gnanasambandham C, Fleissner F, Eberhard P. Enhancing the dissipative properties of particle dampers using rigid obstacle-grids[J]. Journal of Sound and Vibration, 2020, 484: 115522.
[29] Kenneth Langstreth Johnson, Langstreth Johnson Kenneth, Contact Mechanics, Cambridge University press, 1987.
[30] Mindlin R D. Elastic Spheres in Contact Under Varying Oblique Forces[J]. Journal of Applied Mechanics, 1949, 16(7): 327-330.
[31] 胡溧,涂迪,杨啟梁,等.电磁场下颗粒阻尼动态特性试验研究[J].振动与冲击,2017,36(04):41-46.
Hu Yi, Tu Di, Yang Qiliang, et al. Experimental study on dynamic characteristics of particle damping under electroma- gnetic field [J]. Journal of vibration and shock, 2017. 36 (04): 41-46.

PDF(4252 KB)

Accesses

Citation

Detail

段落导航
相关文章

/