切向流作用下直通穿孔管阻性消声器传递损失预测

贺志荣,季振林

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 219-224.

PDF(1809 KB)
PDF(1809 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 219-224.
论文

切向流作用下直通穿孔管阻性消声器传递损失预测

  • 贺志荣,季振林
作者信息 +

Prediction of transfer loss in a straight-through perforated pipe dissipative muffler under tangential flow

  • HE Zhirong, JI Zhenlin
Author information +
文章历史 +

摘要

使用考虑涡粘系数的频域线性纳维斯托克斯方程(linearized Navier-Stokes equations,LNSEs)计算切向流作用下直通穿孔管阻性消声器的传递损失,计算步骤为:(1)运用CFD(computational fluid dynamics)方法求解计算域内的时间平均流动变量,然后将变量映射至声学网格,(2)将声传播介质分为空气和吸声材料,后者等效为具有复声速和复密度的流体,使用频域LNSEs计算声场,最后利用平面波分解法计算消声器的传递损失。计算结果与实验测量结果吻合良好,从而证明了计算方法的正确性。通过数值计算分析了切向流马赫数对不同流阻率和穿孔结构阻性消声器传递损失的影响规律。随着切向流马赫数的增加,消声器在低频域的传递损失有所降低,中高频消声性能变化无明显规律可循;切向流对低穿孔率消声器传递损失的影响大于高穿孔率。

Abstract

The frequency-domain linearized Navier-Stokes equations (LNSEs) considering the eddy viscosity are employed to predict transmission loss of straight-through perforated-tube dissipative muffler in the presence of grazing flow. The calculations are performed in two steps: (1) the time-averaged flow variables in computational model are solved by using CFD method and then are mapped into acoustic mesh, (2) the acoustic medium is divided into air and sound-absorbing material which is fluid with complex sound speed and density, then the frequency-domain LNSEs are adopted to evaluate the acoustic perturbation, last the transmission loss is predicted by using plane wave decomposition method. Good agreements of transmission loss predictions and measurements proved the correctness of predictive method. Further, the effects of grazing flow Mach numbers on the transmission loss of dissipative mufflers with different flow resistivity and perforated structures are analyzed by numerical calculations. With the increasing of the grazing flow Mach numbers, the transmission loss of the mufflers in the low frequency domain decreases, and there is no obvious regular pattern to search for acoustic attenuation performance in the medium and high frequency ranges; the effect of grazing flow on the transmission loss of mufflers with low porosity is greater than that with high porosity.

关键词

直通穿孔管阻性消声器 / 传递损失 / 频域线性化纳维斯托克斯方程 / 涡粘系数

Key words

straight-through perforated- tube dissipative muffler / transmission loss / frequency-domain linearized Navier-Stokes equations / eddy viscosity

引用本文

导出引用
贺志荣,季振林. 切向流作用下直通穿孔管阻性消声器传递损失预测[J]. 振动与冲击, 2023, 42(15): 219-224
HE Zhirong, JI Zhenlin. Prediction of transfer loss in a straight-through perforated pipe dissipative muffler under tangential flow[J]. Journal of Vibration and Shock, 2023, 42(15): 219-224

参考文献

[1] 季振林. 消声器声学理论与设计[M]. 北京:科学出版社,2015.
[2] Selamet A, Xu M B, Lee I J, et al. Analytical approach for sound attenuation in perforated dissipative silencers with inlet/outlet extensions [J]. The Journal of the Acoustical Society of America, 2005, 117(4): 2078-2089.
[3] Ji Z L. Boundary element analysis of a straight-through hybrid silencer [J]. Journal of sound and vibration, 2006, 292 (1-2): 415-423.
[4] Lee I. Acoustic characteristics of perforated dissipative and hybrid silencers [D]. The Ohio State University, 2005.
[5] Fang Z, Ji Z L. Numerical mode matching approach for acoustic attenuation predictions of double-chamber perforated tube dissipative silencers with mean flow [J]. Journal of  Computational Acoustics, 2014, 22(02): 1450004.
[6] 陈志响. 基于三维时域 CFD 方法的穿孔声学特性研究[D]. 哈尔滨工程大学, 2020.
[7] Liu L, Zheng X, Hao Z, et al. A time-domain simulation method to predict insertion loss of a dissipative muffler with exhaust flow[J]. Physics of Fluids, 2021, 33(6): 067114.
[8] 徐航手,季振林,康钟绪. 抗性消声器传递损失预测的三维时域计算方法[J]. 振动与冲击,2010, 29(4): 107-110.
Xu hangshou, Ji Zhenlin, Kang Zhongxu. Three- dimensional time-domain computational approach for  transmission loss of reactive silencers [J]. Journal of vibration
and shock, 2010, 29(4): 107-110.
[9] Kierkegaard A, Boij S, Efraimsson G. A frequency domain linearized Navier–Stokes equations approach to acoustic propagation in flow ducts with sharp edges [J]. The Journal of the Acoustical Society of America, 2010, 127(2): 710-719.
[10] Holmberg A, Kierkegaard A, Weng C. A frequency domain linearized Navier–Stokes method including acoustic damping by eddy viscosity using RANS [J]. Journal of Sound and Vibration, 2015, 346: 229-247.
[11] Gikadi J, Föller S, Sattelmayer T. Impact of turbulence on the prediction of linear aeroacoustic interactions: Acoustic response of a turbulent shear layer[J]. Journal of Sound and Vibration, 2014, 333(24): 6548-6559.
[12] Kierkegaard A, Boij S, Efraimsson G. Simulations of the scattering of sound waves at a sudden area expansion [J]. Journal of Sound and Vibration, 2012, 331(5): 1068-1083.
[13] Liu C, Ji Z L. Computational fluid dynamics-Based numerical analysis of acoustic attenuation and flow resistance Characteristics of Perforated Tube Silencers [J]. Journal of Vibration and Acoustics, 2014, 136(2): 021006.1-021006.1

PDF(1809 KB)

282

Accesses

0

Citation

Detail

段落导航
相关文章

/