宽频带薄膜型声学超材料附加质量分布规律分析

丁北1,2,王炜1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 225-231.

PDF(2865 KB)
PDF(2865 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 225-231.
论文

宽频带薄膜型声学超材料附加质量分布规律分析

  • 丁北1,2,王炜1,2
作者信息 +

Additional mass distribution law of broadband memberane-type acoustic metamaterial

  • DING Bei1,2, WANG Wei1,2
Author information +
文章历史 +

摘要

薄膜型声学超材料因其良好的低频域减振降噪性能而备受关注,其中涉及到的附加质量分布问题也具有重要的研究价值,直接关系到薄膜结构的整体隔声性能。考虑到现有针对质量分布规律的研究仍有待深化,本文以一类薄膜型声学超材料为对象,通过分析多种附加质量分布形式(集中、分散)对应的结构隔声特性,验证了等质量下分散结构相对于集中分布具备更好的隔声性能,进一步明确了质量块质量、数量及其布置环数对于隔声性能的影响规律,形成了可在低频域实现宽频降噪的质量分布方案,即:质量块均匀分布在圆膜上而不产生聚集。仿真及实验分析均表明,该方案能够在保持超材料深亚波长尺寸的同时,强化低频域宽频减振降噪性能,有利于实现结构轻量化设计,并为目标驱动的薄膜型声学超材料功能优化提供了参考依据。

Abstract

Membrane-type acoustic metamaterial has attracted much attention due to its excellent vibration reduction and sound insulation performance in low frequency domain. The additional mass distribution problems involved have great research value, which directly influence the overall performance of the structure. Considering the latent regularity of mass distribution is not clear, membrane-type acoustic metamaterials with the same total mass while different mass distribution patterns are researched in this paper. Through comparing the characteristics with centralized and dispersing mass blocks distribution patterns, it is found that the structure with the latter pattern obtains wider bandwidth. The influences of the size and mass of the blocks and the number of distribution ring regions are discussed. A mass distribution pattern namely the blocks are evenly distributed on the membrane without aggregation is formed. Both simulation and experimental results indicate the pattern is conducive to maintain deep sub-wavelength size, and enhance its performance obviously. It also provides reference for lightweight design and target-driven functional optimization of membrane-type acoustic metamaterials.

关键词

薄膜型声学超材料 / 质量分布 / 隔声性能

Key words

membrane-type acoustic metamaterials / mass distribution / sound insulation performance

引用本文

导出引用
丁北1,2,王炜1,2. 宽频带薄膜型声学超材料附加质量分布规律分析[J]. 振动与冲击, 2023, 42(15): 225-231
DING Bei1,2, WANG Wei1,2. Additional mass distribution law of broadband memberane-type acoustic metamaterial[J]. Journal of Vibration and Shock, 2023, 42(15): 225-231

参考文献

[1] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289: 1734-1736.
[2] 罗英勤,楼京俊,张焱冰. 内嵌局域共振型散射体结构的低频吸声性能研究[J]. 振动与冲击, 2022, 41(8): 86-92.
 LUO Yingqin, LOU Jingjun, ZHANG Yanbing. A study on low frequency sound absorption performance of strcuture embedded local resonant scatters[J]. Journal of vibration and shock, 2022, 41(8): 86-92.
[3] 牛嘉敏,吴九汇. 非对称类声学超材料的低频宽带吸声特性[J]. 振动与冲击, 2017, 37(19): 45-49.
 NIU Jiamin, WU Jiuhui. Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials[J]. Journal of vibration and shock, 2017, 37(19): 45-49.
[4] GU Y H, ZHONG H B, BAO B, et al. Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption[J]. Applied Acoustics, 2021, 172: 107605.
[5] 马承志,王立博,吴九汇. 水下吸声超材料的质量集中效应[J]. 西安交通大学学报, 2021, 55: 163-171.
 MA Chengzhi, WANG Libo, WU Jiuhui. Mass concentration effect of underwater Sound-absorbing metamaterials[J]. Journal of Xi'An JiaoTong University, 2021, 55: 163-171.
[6] 张印,尹剑飞,温激鸿,等. 基于质量放大局域共振型声子晶体的低频减振设计[J]. 振动与冲击, 2016, 35(17): 26-32.
 ZHANG Yin, YIN Jianfei, WEN Jihong, et al. Low frequency vibration reduction design for inertial local resonance phononic crystals based on inertial amplification[J]. Journal of vibration and shock, 2016, 35(17): 26-32.
[7] 吴昱东,李人宪,丁渭平,等. 基于局域共振声子带隙的扭转减振器设计方法[J]. 振动与冲击, 2018, 37(9): 180-184.
 WU Yudong, LI Renxian, DING Weiping, et al. Design method for torsional vibration dampers based on local resonance photonic crystals band-gap[J]. Journal of vibration and shock, 2018, 37(9): 180-184.
[8] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301.
[9] FANG N, XI D J, XU J Y, et al. Ultrasonic metamaterials with negative modules[J]. Nature Meterials, 2006, 5: 452-456.
[10] DING Y Q, LIU Z Y, QIU C Y, et al. Metamaterial with simultaneously negative bulk modulus and mass density[J]. Physical Review Letters, 2007, 99(9): 093904.
[11] STEIN A, NOUH M, SINGH T. Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: From unit cells to finite chains[J]. Journal of Sound and Vibration, 2022, 523: 116716.
[12] 杨文,杨凯伦,郭旭,等. 附着式局域共振声子晶体薄板的带隙解析解[J]. 振动与冲击, 2022, 41(8): 238-243.
 YANG Wen, YANG Kailun, GUO Xu, et al. Analytical sound of band gap in an attached locally resonant phononic crystal thin plate[J]. Journal of vibration and shock, 2022, 41(8): 238-243.
[13] BAE M H, OH J H. Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2020, 139: 103930.
[14] CHEN Y Y, HUANG G L, ZHU X M, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model[J]. The Journal of the Acoustical Society of America, 2014, 136(3): 969-979.
[15] LANGFELDT F, RIECKEN J, GLEINE W, et al. A membrane-type acoustic metamaterial with adjustable acoustic properties[J]. Journal of Sound and Vibration, 2016, 373: 1-18.
[16] MA F Y, HUANG M, WU J H. Acoustic metamaterials with synergetic coupling[J]. Journal of Applied Physics, 2017, 122(21): 215102.
[17] WANGX P, CHEN Y Y, ZHOU G J, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867.
[18] ZHANG Y G, WEN J H, XIAO Y, et al. Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials[J]. Physics Letters A, 2012, 376(17): 1489-1494.
[19] 曹卫锋,白鸿柏,朱庆. 薄膜型声学超材料的低频吸收性能研究[J]. 振动与冲击, 2018, 27(14): 188-194.
 CAO Weifeng, BAI Hongbai, ZHU Qing. Analysis on the low frequency acoustic absorption performance of a metamaterial membrane[J]. Journal of vibration and shock, 2018, 27(14): 188-194.
[20] 朱庆,白鸿柏,路纯红,等. 薄膜超材料的等效特性分析及试验研究[J]. 振动与冲击, 2017, 36(18): 91-97.
 ZHU Qing, BAI Hongbai, LU Chunhong, et al. Analysis on the equivalent properties of metamaterial membranes[J]. Journal of vibration and shock, 2017, 36(18): 91-97.
[21] LANGFELDT F, KEMSIES H, GLEINE W, et al. Perforated membrane-type acoustic metamaterials[J]. Physics Letters A, 2017, 381(16): 1457-1462.
[22] SUN K H, KIM J E, KIM J, et al. Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity[J]. Smart Materials and Structures, 2017, 26(7): 075011.
[23] YU X, LU Z B, CUI F S, et al. Tunable acoustic metamaterial with an array of resonators actuated by dielectric elastomer[J]. Extreme Mechanics Letters, 2017, 12: 37-40.
[24] ZHANG H, XIAO Y, WEN J H, et al. Ultra-thin smart acoustic metasurface for low-frequency sound insulation[J]. Applied Physics Letters, 2016, 108(14): 141902.
[25] XING C, CHEN X X, GANG A S, et al. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields[J]. Applied Physics Letters, 2014, 105: 071913.
[26] NAIFY C J, CHANG C-M, MCKNIGHT G, et al. Membrane-type metamaterials: Transmission loss of multi-celled arrays[J]. Journal of Applied Physics, 2011, 109(10): 104902.
[27] ZHOU G J, WU J H, LU K, et al. An approach to broaden the low-frequency bandwidth of sound insulation by regulating dynamic effective parameters of acoustic metamaterials[J]. Journal of Physics D: Applied Physics, 2019, 52(21): 215102.
[28] LU Z B, YU X, LAU S-K, et al. Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation[J]. Applied Acoustics, 2020, 157: 107003.

PDF(2865 KB)

473

Accesses

0

Citation

Detail

段落导航
相关文章

/