奇异谱分解联合互信息的主轴轴承故障特征提取研究

王振亚1,2,伍星 2,3,刘韬1,2,缪护4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 23-30.

PDF(4047 KB)
PDF(4047 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 23-30.
论文

奇异谱分解联合互信息的主轴轴承故障特征提取研究

  • 王振亚1,2,伍星 2,3,刘韬1,2,缪护4
作者信息 +

Fault feature extraction of spindle bearing based on SSD and MI

  • WANG Zhenya1,2, WU Xing2,3, LIU Tao1,2, MIAO Hu4
Author information +
文章历史 +

摘要

奇异谱分解算法(Singular spectrum decomposition, SSD)存在信号信噪比较低时降噪能力较差以及敏感分量个数难以确定的问题。针对上述问题,提出了SSD联合互信息理论(Mutual Information, MI)的主轴故障特征提取方法。首先,将轴承振动信号经过SSD分解,得到多个奇异谱分量(Singular spectral component,SSC);然后分别计算原始信号与SSC之间的互信息,选择最小互信息(Minimum mutual information, MinMI)处的分量为最佳分量。由于背景噪声的影响,选取的最佳分量故障特征频率并不明显。因此,基于振动信号特点与互信息理论提出了差分突变互信息(Differential mutation mutual information, DMMI)的有效分量保留方法,通过对计算相邻SSC之和之间的MI值,保留突变点内的分量作为敏感信号,在此基础上再依据MinMI原则设计带通滤波器,对敏感信号带通滤波并进行包络解调以提取故障特征频率。通过仿真信号与真实主轴轴承数据分析表明:对信号进行DMMI保留敏感分量,结合MinMI准则的自适应滤波处理在主轴轴承故障特征提取方面表现了优异的性能。

Abstract

Singular spectrum decomposition (SSD) algorithm has the problems of poor noise reduction ability when the signal-to-noise ratio is low and the number of sensitive components is difficult to determine. Aiming at the above problems, a spindle fault feature extraction method based on SSD Mutual Information (MI) is proposed. Firstly, the bearing vibration signal is decomposed by SSD to obtain multiple singular spectral components (SSCs); Then calculate the mutual information between the original signal and SSC respectively, and select the component at the minimum mutual information (MinMI) as the best component. Due to the influence of background noise, the selected optimal component fault characteristic frequency is not obvious. Therefore, based on the characteristics of vibration signals and mutual information theory, a method to retain the effective components of differential mutation mutual information (DMMI) is proposed. By calculating the MI value between the sum of adjacent SSCs, the components in the mutation point are retained as sensitive signals. On this basis, a band-pass filter is designed according to the MinMI principle to filter the sensitive signal band-pass and envelope demodulation to extract the fault characteristic frequency. The analysis of the simulation signal and real spindle-bearing data shows that DMMI preserving sensitive components of the signal combined with MinMI adaptive filtering processing has an excellent performance in the spindle-bearing fault feature extraction.

关键词

互信息理论 / 奇异谱分解 / 轴承振动信号 / 带通滤波 / 故障诊断

Key words

Mutual information / Singular spectrum Decomposition / bearing Vibration signal / Bandpass-filtering

引用本文

导出引用
王振亚1,2,伍星 2,3,刘韬1,2,缪护4. 奇异谱分解联合互信息的主轴轴承故障特征提取研究[J]. 振动与冲击, 2023, 42(15): 23-30
WANG Zhenya1,2, WU Xing2,3, LIU Tao1,2, MIAO Hu4. Fault feature extraction of spindle bearing based on SSD and MI[J]. Journal of Vibration and Shock, 2023, 42(15): 23-30

参考文献

[1] Lei Y G, YANG B, Jiang X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap [J]. Mechanical System and Signal Processing, 2020, 138: 106587-106625.
[2] 李霁蒲, 黄如意, 陈祝云, 等. 一种用于主轴轴承故障诊断的深度卷积动态对抗迁移网络[J]. 振动工程学报, 2022, 1(02): 446-453.
LI Jipu, HUANG Ruyi, CHEN Zhuyun, et al.  A deep convolutional dynamic adversarial transfer network for spindle bearing fault diagnosis [J]. Journal of Vibration Engineering, 2022, 1(02): 446-453.
[3] 甄冬, 田少宁, 郭俊超, 孟召宗, 谷丰收. 改进型EEMD和MSB解调方法及其在轴承故障特征提取中的应用[J/OL].(2022-04-22)[2022-12-14]. https://kns.cnki.net/kcms/detail/32.1349.TB.20220421.1125.004.html.
 [4] 赵博, 李鹤. 结合EMD和LSF的振动信号降噪方法的研究[J]. 振动.测试与诊断, 2022, 42(03): 606-616.
ZhAO Bo, LI He. Noise reduction method of vibration signal combining EMD and LSF [J].  Journal of Vibration, Measurement and Diagnosis, 2022, 42(03): 606-616.
[5] GANGSAR P, TIWARI R J M S, PROCESSING S. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review [J]. Mechanical System and Signal Processing, 2020, 144(4): 106908-106928.
[6] 李华, 刘韬, 伍星, 等. 相关奇异值比的SVD在轴承故障诊断中的应用[J]. 机械工程学报, 2021, 57(21): 138-149.
LI Hua, LIU Tao, WU Xing, et al.  Application of SVD with Correlation Singular Value Ratio in Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2021, 57(21): 138-149.
[7] Li Hua, Liu Tao, Wu Xing, et al. Application of EEMD and improved frequency band entropy in bearing fault feature extraction [J]. ISA Transactions, 2019, 88: 170-185
[8] 崔玲丽, 刘银行, 王鑫. 基于改进奇异值分解的滚动轴承微弱故障特征提取方法[J]. 机械工程学报, 2022, 28 (02): 1-12.
CUI Lingli, LIU Bank, WANG Xin.  Feature extraction of weak fault for rolling bearing based on improved
singular value decomposition [J]. Journal of Mechanical Engineering, 2022, 28 (02): 1-12.
[9] 程铁栋, 易其文, 吴义文, 等. 改进EWT_MPE模型在矿山微震信号特征提取中的应用[J]. 振动与冲击,   2021, 40(09): 92-101.
CHENG Tiedong, YI Qiwen, WU Yiwen, et al. Application of improved EWT_MPE model in feature extraction of mine micro-seismic signals [J].  Journal of Vibration and Shock, 2021, 40(09): 92-101.
[10] 于淼, 张耀鲁, 徐泽辰, 等. 基于MEEMD-HHT的分布式光纤振动传感系统信号特征提取方法[J]. 红外与激光工程, 2021, 50(07): 207-218.
Yu Miao, Zhang Yaolu, Xu Zechen, et al. Signal feature extraction method based on MEEMD-HHT distributed optical fiber vibration sensing system [J].  Infrared and Laser Engineering, 2021, 50(07): 207-218.
[11] Bonizzi P, Karel J, Mesta O, et al. SINGULAR SPECTRUM DECOMPOSITION: A NEW METHOD FOR TIME SERIES DECOMPOSITION[J]. Advances in Adaptive Data Analysis, 2014, 6(04):107-109.
[12] 王晓龙, 唐贵基, 何玉灵, 等. 变转速工况下基于改进奇异谱分解和1.5维包络阶次谱的风电机组轴承损伤识别[J]. 太阳能学报, 2021, 42(01): 240-247.
WANG Xiaolong, TANG Guiji, HE Yuling, et al. Injury identification of wind turbine bearing based on ISSD and 1.5 dimension envelope order spectrum under variable rotating speed condition [J].  Acta Energiae Solaris Sinica, 2021, 42(01): 240-247.
[13] 周杰, 王云艺, 陈传海, 等. 基于改进MED-SSD的齿轮箱复合故障诊断方法[J]. 吉林大学学报(工学版),  2022, 52(02): 450-457.
ZHOU Jie, WANG Yunyi, CHEN Chuanhai, et al.  Gearbox complex fault diagnosis method based on improved minimum entropy deconvolution and singular spectrum decomposition [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(02): 450-457.
[14] 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107.
CHEN Shijian, PENG Zhike, ZHOU Peng.  Review of signal decomposition theory and its applications in machine fault diagnosis [J]. Chinese Journal of Mechanical Engineering, 2020, 56(17): 91-107.
[15] Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(8):1226-1238.
[16] Li Hua, Liu Tao, Wu Xing, et al. Research on bearing fault feature extraction based on singular value decomposition and optimized frequency band entropy[J]. Mechanical Systems and Signal Processing, 2019, 118: 477-502
[17] Miao Y, Zhao M, Hua J. Research on sparsity indexes for fault diagnosis of rotating machinery [J]. Measurement, 2020, 158:107733-107745.
[18] 张旭辉, 张超, 樊红卫, 等. 快速谱峭度结合阶次分析滚动轴承故障诊断[J]. 振动.测试与诊断, 2021, 41(06): 235-242.
ZHANG Xuhui, ZHNAG Chao, FAN Hongwei, et al.  Improved fault diagnosis of rolling bearing by fast kurtogram and order analysis [J]. Journal of Vibration,Measurement & Diagnosis, 2021, 41(06): 235-242.

PDF(4047 KB)

Accesses

Citation

Detail

段落导航
相关文章

/