车轮踏面粗糙度对基于惯性基准法的钢轨波磨检测结果影响分析

吴泽宇1,2,李明航1,王文斌1,吴宗臻1,张胜龙1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 241-249.

PDF(2837 KB)
PDF(2837 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 241-249.
论文

车轮踏面粗糙度对基于惯性基准法的钢轨波磨检测结果影响分析

  • 吴泽宇1,2,李明航1,王文斌1,吴宗臻1,张胜龙1
作者信息 +

Influence analysis of wheel tread roughness on rail corrugation detection results based on inertial reference method

  • WU Zeyu1,2, LI Minghang1, WANG Wenbin1, WU Zongzhen1, ZHANG Shenglong1
Author information +
文章历史 +

摘要

通过在地铁电客车上搭载检测设备,并基于惯性基准法实现轨道波磨快速检测已成为一种重要的技术手段。将车轮踏面粗糙度,多边形车轮以及钢轨表面粗糙度作为输入激励,建立车辆-轨道耦合多体动力学数值模型,分析车轮磨耗对基于惯性基准法的轨道波磨检测结果的影响。研究结果表明:随着钢轨波磨的加剧,当其特征波长对应的粗糙度级超过车轮踏面粗糙度级接近20dB时,车轮踏面粗糙度的存在对钢轨波磨特征波长幅值的检测精度影响很小;车轮踏面粗糙度与钢轨波磨特征波长接近且车轮踏面粗糙度幅值与钢轨波磨特征幅值之比大于0.5时,钢轨波磨检测结果的特征幅值显著增大。此时应及时进行车轮镟修对以保证检测结果的精确性。

Abstract

With the use of detecting equipment which are set on metro electric trains, rail corrugation measurement based on inertial reference method has become an important tool for the smart urban transit. By taking wheel tread roughness, polygon wheel and track roughness as input excitation, a vehicle-track coupled multi-body dynamics numerical model is established to analyze the effect of different wheel wear on the results of track measurement results based on inertial reference method. The results indicate that, with the exacerbation of rail corrugation development, when the rail roughness level corresponding to its characteristic wavelength exceeds the wheels tread roughness level by nearly 20 dB, the existence of wheels tread roughness has little influence on the measurement results accuracy of rail characteristic wavelength corrugation amplitude. When the characteristic wavelengths of wheel tread roughness and rail corrugation are close, and the ratio of wheel tread roughness characteristic amplitude to the rail corrugation characteristic amplitude is greater than 0.5, the characteristic amplitude of rail corrugation measurement results increases remarkably. Wheels of vehicle shall be lathed in time to ensure the accuracy of detection.

关键词

城市轨道交通 / 惯性基准法 / 钢轨波磨 / 车轮踏面粗糙度

Key words

urban rail transit / inertial reference method / rail corrugation / wheels tread roughness

引用本文

导出引用
吴泽宇1,2,李明航1,王文斌1,吴宗臻1,张胜龙1. 车轮踏面粗糙度对基于惯性基准法的钢轨波磨检测结果影响分析[J]. 振动与冲击, 2023, 42(15): 241-249
WU Zeyu1,2, LI Minghang1, WANG Wenbin1, WU Zongzhen1, ZHANG Shenglong1. Influence analysis of wheel tread roughness on rail corrugation detection results based on inertial reference method[J]. Journal of Vibration and Shock, 2023, 42(15): 241-249

参考文献

[1] 国家铁路局. TB/T 3355-2014 轨道几何状态动态检测及评定[S]. 北京:中国铁道出版社,2015.
[2] 关庆华, 张斌, 熊嘉阳, 等. 地铁钢轨波磨的基本特征、形成机理和治理措施综述[J]. 交通运输工程学报,2020,21(1):316-337.
GUAN Qing-hua , ZHANG Bin , Xiong Jia-yang , et al. Review on basic characteristics, formation mechanisms, and treatment measures of rail corrugation in metro systems[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1):316-337. (in Chinese)
[3] Grassie S L. Measurement of railhead longitudinal profiles: a comparison of different techniques[J]. Wear, 1996, 191(1-2):245-251.
[4] Caprioli A, Cigada A, D Raveglia. Rail inspection in track maintenance: A benchmark between the wavelet approach and the more conventional Fourier analysis[J]. Mechanical Systems & Signal Processing, 2007, 21(2):631-652.
[5] Tsunashima H, Asano A, Ogino M, et al. Condition Monitoring of Railway Tracks Using Compact Size On-board Monitoring Device[C]// 6th IET Conference on Railway Condition Monitoring (RCM 2014). IET, 2014.
[6] 晏兆晋, 高翠香, 徐晓迪, 等. 基于车辆响应的高速铁路周期性轨道短波病害时频特性分析[J].中国铁道科学,2020,41(01):10-17.
YAN Chao-jin , GAO Cui-xiang , XU Xiao-di , et al. Time-frequency characteristics analysis of periodic short wave disease of track for high-speed railway based on vehicle response[J]. China Railway Science, 2020,41(01):10-17. (in Chinese)
[7] 刘金朝, 陈东生, 赵钢, 等. 评判高铁轨道短波不平顺病害的轨道冲击指数法[J].中国铁道科学,2016,37(04):34-41.
LIU Jin-chao , CHEN Dong-sheng , ZHAO Gang , et al. Track Impact index method for evaluating track shortWave irregularity of high speed railway[J]. China Railway Science, 2016,37(04):34-41. (in Chinese)
[8] 刘国云,曾京,张波.钢轨波磨对高速车辆振动特性的影响[J].振动与冲击,2019,38(06):137-143.
LIU Guo-yun , Zeng Jing , Zhang Bo . Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6):7. (in Chinese)
[9] 周成, 高建敏. 基于三维轮轨瞬态动力学模型的钢轨波磨不平顺动力影响与识别[J].铁道科学与工程学报, 2020, 17(4):8.
ZHOU Cheng , GAO Jian-min . Dynamic effect and identification of rail corrugation irregularity based on the three-dimensional wheel-rail transient dynamic model[J]. Journal of Railway Science and Engineering, 2020, 17(4):8. (in Chinese)
[10] 张鹏飞,姚典,冯青松,雷晓燕,刘庆杰.地铁波磨对轮轨动力特性影响及其安全阈值分析[J].振动与冲击,2022,41(05):123-130+150.
ZHANG Peng-fei , YAO Dian , FENG Qing-song , et al. Effects of metro rail corrugation on wheel-track system dynamic characteristics and its wave depth safety threshold[J]. Journal of Vibration and Shock, 2022,41(05):123-130+150 (in Chinese)
[11] 宋颖,施文杰,孙宝臣.基于自适应连续小波模极大值算法的车轮擦伤定量评估[J].振动与冲击,2021,40(12):168-178+209.
SONG Ying , SHI Wen-jie , SUN Bao-chen , et al. Evaluation of railway wheel-flat via adaptive continuous wavelet transform modulus maximum algorithm[J]. Journal of Vibration and Shock, 2021,40(12):168-178+209. (in Chinese)
[12] 李明航,马蒙,谭新宇,张厚贵,刘卫丰.随机车轮不圆顺及车辆参数对轨道频域振动响应影响分析[J].振动与冲击,2021,40(22):104-111+137.
LI Ming-hang , MA Meng , TAN Xin-yu , et al. Influences of random wheel irregularity and vehicle parameters on the vibration of track in frequency domain[J]. Journal of Vibration and Shock, 2021,40(22):104-111+137. (in Chinese)
[13] 王平, 汪鑫, 王源, 等. 基于高铁轨道不平顺的车轮不圆顺识别模型[J].西南交通大学学报,2020,55(04):681-687+678.
WANG Ping , WANG Xin , WANG Yuan , et al. Polygonal wheel detection model based on track irregularity of high-speed railway[J]. Journal of Southwest Jiaotong University, 2020,55(04):681-687+678. (in Chinese)
[14] 徐庆华. 试采用FFT方法实现加速度、速度与位移的相互转换[J]. 振动.测试与诊断, 1997, 17(4):5.
XU Qing-hua. Conversion between vibrational acceleration, velocity and displacement using FFT[J]. Journal of Vibration,Measurement & Diagnosis, 1997, 17(4):5. (in Chinese)
[15] Brandt A, Brincker R. Integrating time signals in frequency domain – Comparison with time domain integration[J]. Measurement, 2014, 58:511-519.
[16] 林建辉, 陈建政, 高燕,等. 我国干线轨道谱理论分析及试验研究[J]. 机械工程学报, 2004, 040(001):174-178.
LIN Jian-hui , Chen Jian-zheng , Gao Yan , et al. Theory analysis and test research of Chinese main track irregularities psd[J]. Chinese Journal of Mechanical Engineering, 2004, 40(1):174-178.
[17] 丁玉美. 数字信号处理—时域离散随机信号处理[M]. 西安:西安电子科技大学出版社,2002.
[18] 李明航. 考虑振源随机特性的地铁列车振动环境影响混合预测模型研究[D].北京交通大学,2021.
LI Ming-hang . Study on hybrid prediction model of train-induced environmental vibration considering random characteristics of vibration source[D]. Beijing Jiaotong University,2021
[19] 马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24):6.
MA Wei-hua. Analyses of the Form Reason of Wheel Polygonization of Subway Vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24):106.
[20] 李伟, 李言义, 张雄飞,等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报, 2013, 49(18):6.
LI Wei . Mechanism of the Polygonal Wear of Metro Train Wheels[J]. Journal of Mechanical Engineering, 2013, 49(18):17.

PDF(2837 KB)

364

Accesses

0

Citation

Detail

段落导航
相关文章

/