海上漂浮式风机服役环境复杂,为了在风浪载荷的联合作用下减少漂浮式风机的发电功率以及风轮转速的波动。在FAST基础控制的基础上提出了将分数阶比例-积分-微分(proportional-integral-derivative,PID)变桨控制,来抑制风、浪载荷的影响。以美国可再生能源实验室的5MW的OC4海上漂浮式风机为研究对象,首先建立了基于分数阶PID变桨距控制的漂浮式风机的动力学模型,结合遗传算法对控制的参数进行寻优,来提高系统的控制效果。使用了FAST与Simulink联合仿真,研究其对发电功率和风轮转速以及平台六自由度运动的影响,并且对变桨以后平台六自由度的运动进行了建模与分析研究。结果表明:与FAST基础PID控制器相比,基于遗传算法寻优的分数阶PID控制器具有更高的控制精度,有效降低输出功率和风轮转速的波动,而且会对六自由度的运动产生影响。
Abstract
The service environment of offshore floating wind turbines is complex, in order to reduce the fluctuation of the power generation of floating wind turbines and the rotation speed of wind turbines under the combined action of wind and wave loads. On the basis of FAST basic control, a fractional proportional-integral-derivative (PID) pitch control is proposed to suppress the influence of wind and wave loads. Taking the 5MW OC4 offshore floating wind turbine of the American Renewable Energy Laboratory as the research object, the dynamic model of the floating wind turbine based on fractional-order PID pitch control is established first, and the control parameters are optimized by combining with the genetic algorithm. to improve the control effect of the system. The co-simulation between FAST and Simulink is used to study its influence on the power generation, the rotational speed of the rotor and the motion of the platform with six degrees of freedom. The results show that compared with the FAST basic PID controller, the fractional-order PID controller based on genetic algorithm optimization has higher control accuracy, effectively reduces the fluctuation of output power and rotor speed, and has an impact on the motion of six degrees of freedom.
关键词
海上漂浮式风机 /
动力学模型 /
变桨控制 /
漂浮式平台 /
发电功率
{{custom_keyword}} /
Key words
Offshore Floating Fan /
Dynamic Model /
Pitch Control /
Floating Platform /
power generation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Colombo L , Corradini M L , Ippoliti G , et al. Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach[J]. ISA Transactions, 2019, 96.
[2] Yin X , Zhang W , Jiang Z , et al. Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine[J]. Mechanical Systems and Signal Processing, 2019, 133(4):105704.
[3] AGHAEINEZHAD S. MORTEZA, TAGHIZADEH MOSTAFA, MAZARE MAHMOOD, et al. Individual Pitch Angle Control of a Variable Speed Wind Turbine Using Adaptive Fractional Order Non-Singular Fast Terminal Sliding Mode Control[J]. International Journal of Precision Engineering and Manufacturing,2021,22(4):511-522. DOI:10.1186/s12544-021-00481-7.
[4] Civelek Z . Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm[J]. Engineering Science and Technology an International Journal, 2019, 23(1).
[5] Ma R , Hu S J , Fu X B , et al. Torque Control and Pitch Control Strategy in VSCF Wind Turbine above Rated Wind Speed[J]. Advanced Materials Research, 2012, 463-464:1715-1720.
[6]司荣国, 贾成真, 王灵梅,等. 基于5MW风机模型的变初值模糊PI变桨控制技术研究[J]. 可再生能源, 2020.
Si Rongguo, Jia Chengzhen, Wang Lingmei, et al. Research on variable initial value fuzzy PI pitch control technology based on 5MW wind turbine model [J]. Renewable Energy, 2020
[7]苑晨阳,李静,陈健云,等. 大型风电机组变桨距ABC-PID控制研究[J]. 太阳能学报,2019.
Yuan Chenyang, Li Jing, Chen Jianyun, et al. Research on variable pitch ABC-PID control of large wind turbines [J]. Chinese Journal of Solar Energy, 2019.
[8]闫学勤,王维庆,王海云. 基于IQPI-R的风力机独立变桨距控制策略研究[J]. 太阳能学报,2020.
Yan Xueqin, Wang Weiqing, Wang Haiyun. Research on Independent Pitch Control Strategy of Wind Turbine Based on IQPI-R [J]. Chinese Journal of Solar Energy, 2020.
[9] Lackner M A . Controlling Platform Motions and Reducing Blade Loads for Floating Wind Turbines[J]. Wind Engineering, 2009, 33(6):541-553.
[10]李飞龙, 周腊吾, 李玲,等. 基于蚁群算法的Spar型浮式风机独立变桨控制方法[J]. 可再生能源, 2020, 38(6):7.
Li Feilong, Zhou Lawu, Li Ling, et al. Independent pitch control method for Spar floating fan based on ant colony algorithm [J]. Renewable Energy, 2020, 38(6):7
[11] Jiao X , Yang Q , Fan B , et al. Ewse and Ude Based Pitch Angle Control FOR Wind Turbine Systems Operating in Above Rated Wind Speed Region[J]. Journal of Dynamic Systems Measurement and Control, 2019, 142(3):031006.
[12]田德, 高洋, 闫肖蒙,等. 基于差分进化算法的风电机组变桨参数寻优[J]. 太阳能学报, 2019, 40(8):8.
Tian De, Gao Yang, Yan Xiaomeng, et al. Optimization of pitch parameters of wind turbine based on differential evolution algorithm [J]. Chinese Journal of Solar Energy, 2019, 40(8):8.
[13] Karad S , Thakur R . Comparative Analysis of Fractional-Order PID Controller for Pitch Angle Control of Wind Turbine System[M]. 2020.
[14] Djamai M . Control of Wind Turbine by LPV Gain Scheduling with Tower Load Reduction[C]// 2019 18th European
[15] Pujana-Arrese A , Landaluze J , Segurola E , et al. H∞ Based Control for Load Mitigation in Wind Turbines[J]. Energies, 2012, 5(4):938-967.
[16] YU Wan, DING Qinwei, LI Chun,等. 不同变桨控制对海上风力机漂浮稳定性影响研究[J]. 振动与冲击, 2019, 38(12):8.
YU Wan, DING Qinwei, LI Chun, et al. Research on the influence of different pitch controls on the floating stability of offshore wind turbines [J]. Vibration and Shock, 2019, 38(12):8.
[17] Jonkman J M . Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine[J]. Dissertations & Theses Gradworks, 2007
[18] Gavin H P. the levenberg-marquardt algorithm for nonlinear least squares curve-fitting problems[J]. 2019.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}