张紧器结构非线性对深海顶张式立管系统参激稳定性的影响分析

丁明1,孟帅1,丁英2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 277-284.

PDF(3185 KB)
PDF(3185 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 277-284.
论文

张紧器结构非线性对深海顶张式立管系统参激稳定性的影响分析

  • 丁明1,孟帅1,丁英2
作者信息 +

Effects of tensioner structural nonlinearity on parametric excitation stability of  deepwater top-tensioned riser system

  • DING Ming1, MENG Shuai1, DING Ying2
Author information +
文章历史 +

摘要

顶张式立管在作业时,浮式平台垂荡运动导致立管轴向张力随时间变化,可能引发立管在水平方向发生参激失稳。随着海洋开发进入深海区,海洋环境愈加恶劣,立管因长径比大幅增加而柔性增强。为确保系统作业安全,必须寻找新的(以前被忽略或简化)关键影响因素以实现对立管动态响应准确预测和系统稳定性科学预判。在参激稳定性预报中,直接作用式张紧器最常采用的是线性弹簧模型和工程简化模型。考虑液压缸装置的气体压强和容积、摩擦力、液压损失等因素,建立了直接作用式张紧器非线性模型。采用张紧器线性弹簧模型、工程简化模型和非线性模型,基于富洛开理论预报1000米顶张式立管系统的参激稳定性。研究表明,张紧器结构非线性影响立管张紧力和固有频率计算,进而可能导致系统参激稳定误判。采用三种张紧器模型预报参激不稳定区的差别主要发生在低频区,利用非线性模型预报的参激不稳定区最大。随着蓄能器高压气体初始体积的增加和低压氮气瓶初始压强的提高,张紧器结构非线性效应会进一步加强。研究成果可用于修正现用的参激分析软件以更适用于深海区。

Abstract

At normal operation condition, TTR (Top Tensioned Riser) is subject to a time-varying tension exerted by the top floating platform and it may lose stability in the lateral direction which is called parametric instability. As ocean exploration steps into deep-waters, ocean environment becomes more severe, and the flexibility of marine riser is enhanced due to the increased aspect ratio. It requires to figure out the new influential factors (which has been neglected or simplified) for parametric stability prediction with accuracy to ensure the integrity of riser system. In parametric stability prediction of a TTR, it typically adopts a linear spring model or a simplified engineering model for the DAT (Direct Acting Tensioner) system. In this study, a nonlinear model of the DAT is derived in a rigorous way accounting for the effects of gas pressure and volume, friction forces and pressure loss. The parametric stability of a 1000 m TTR is investigated employs the three tensioner models based on Floquet theory. It has found that the structural nonlinearity of the tensioner affects the calculations of the tension exerted on the riser top end and the natural frequencies of the riser system which may lead to the misprediction of parametric stability. The disparities of the predicted instability region mainly occur in the low frequency domain, and the instability area via the nonlinear model is the largest. It has also found that the structural nonlinearity of the tensioner becomes more profound with the increase of high-pressure gas volume and low-pressure nitrogen pressure. This study is of practical significance for revising the existing software before deep-water applications.

关键词

深海立管 / 参激振动 / 张紧器非线性 / 不稳定区

Key words

deep-water riser / parametric vibration / tensioner nonlinearity / Instability region

引用本文

导出引用
丁明1,孟帅1,丁英2. 张紧器结构非线性对深海顶张式立管系统参激稳定性的影响分析[J]. 振动与冲击, 2023, 42(15): 277-284
DING Ming1, MENG Shuai1, DING Ying2. Effects of tensioner structural nonlinearity on parametric excitation stability of  deepwater top-tensioned riser system[J]. Journal of Vibration and Shock, 2023, 42(15): 277-284

参考文献

[1] Brugmans J . Parametric Instability of Deep-Water Risers[J]. tu delft faculty of civil engineering & geosciences hydraulic engineering, 2005.
[2] Hsu C S. The response of a parametrically excited hanging string in fluid [J]. Journal of Sound and Vibration, 1975, 39:305-316.
[3] Kuiper G L ,  Brugmans J ,  Metrikine A V . Destabilization of deep-water risers by a heaving platform[J]. Journal of Sound & Vibration, 2008, 310(3):541-557.
[4] 杨和振,李华军.参数激励下深海立管动力特性研究[J].振动与冲击,2009,28(09):65-69+78+214.
Yang Hezhen, Li Huajun.Research on dynamic characteristics of deep-sea riser under parametric excitation[J].Vibration and Shock,2009,28(09):65-69+78+214.
[5] 张杰, 唐友刚, 黄磊. 深海立管参激振动研究综述[J]. 船舶工程, 2012(6):1-4.
Zhang Jie, Tang Yougang, Huang Lei. A review of research on parasitic vibration of deep-sea risers [J]. Ship Engineering, 2012(6):1-4.
[6] 肖飞.深海顶张力立管在多频参数激励下的稳定性分析和可靠性评估[D]. 上海交通大学, 2014.
Xiao Fei. Stability analysis and reliability evaluation of deep-sea top tension riser under multi-frequency parameter excitation [D]. Shanghai Jiaotong University, 2014.
[7] 王威, 陈炉云.复杂预应力对立管参激振动特性的影响分析[J].船舶力学,2018,22(2):214-223.
Wang Wei, Chen Luyun. Analysis of the influence of complex prestress on the parasitic vibration characteristics of risers [J]. Ship Mechanics, 2018, 22(2): 214-223.
[8] Meng S, Song S, Che C, et al. Internal flow effect on the parametric instability of deepwater drilling risers[J]. Ocean Engineering, 2018, 149(FEB.1):305-312.
[9] 董自鑫,桑松,曹爱霞等. 单频与多频激励下深海TTR立管参激特性分析[J].中国造船,2018,62(1):110-122.
Dong Zixin, Sang Song, Cao Aixia, et al. Analysis of deep-sea TTR riser excitation characteristics under single-frequency and multi-frequency excitation [J]. China Shipbuilding, 2018, 62(1): 110-122.
[10] 陈柏全,余杨,余建星等. 顶张式立管液压气动式张紧器的数值模拟[J].振动与冲击,2019,38(10):85-91.
Chen Baiquan, Yu Yang, Yu Jianxing, etc. Numerical simulation of hydraulic pneumatic tensioner for top tension risers [J]. Vibration and Shock, 2019,38(10):85-91.
[11] Pestana, Guimaraes R , ROVERI F E, FRANCISS R,  et al. Marine riser emergency disconnection analysis using scalar elements for tensioner modelling[J]. Applied Ocean Research, 2016.
[12] Li S , Campbell M , Howells H , et al. Tension Loss of Hydro-Pneumatic Riser Tensioners[C]// ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes:ASME,2013.
[13] ANDERSSON S, S Ӧ DERBERG A, BJ Ӧ RKLUND S. Friction models for sliding dry, boundary and mixed lubricated contacts[J]. Tribology international, 2007, 40(4): 580-587.
[14] LEE H, ROH M I, HAM S H, et al. Dynamic simulation of the wireline riser tensioner system for a mobile offshore drilling unit based on multibody system dynamics[J]. Ocean Engineering, 2015(106): 485-495.
[15] 王坤鹏,薛鸿祥,唐文勇.全耦合深海平台系统中液压张紧器的数值模拟[J].上海交通大学学报,2012,46(10):1652-1657.
Wang Kunpeng, Xue Hongxiang, Tang Wenyong. Numerical simulation of hydraulic tensioner in fully coupled deep-sea platform system[J]. Journal of Shanghai Jiaotong University, 2012, 46(10): 1652-1657.
[16] Yu A, Cheng Y, Bhat S . Evaluation of Key Hydraulic Tensioner Performance Parameters for Ultra Deep Water Applications[C] // Asme International Conference on Offshore Mechanics & Arctic Engineering. Estoril:ASME, 2008.
[17] 吴晨,余建星,余杨,陈柏全,徐立新.张紧器系统对顶张式立管固有频率的影响研究[J].振动与冲击,2020,39(11):209-216.
Wu Chen, Yu Jianxing, Yu Yang, Chen Baiquan, Xu Lixin. Research on the Influence of Tensioner System on Natural Frequency of Top-tensioned Riser[J].Vibration and Shock,2020,39(11):209-216.
[18] Païdoussis MP. Fluid-Structure Interactions: Slender Structures and Axial Flow (Vol.1). Second Ed. San Diego: Academic Press, 2014.
[19] 李欢,李鹏,范松,付俊,张彩莹.基于AMESim的隔水管张紧器抗反冲控制研究[J].石油机械,2019,47(09):84-89+131.
Li Huan, Li Peng, Fan Song, Fu Jun, Zhang Caiying. Research on anti-recoil control of riser tensioner based on AMESim[J]. Petroleum Machinery,2019,47(09):84-89+131.
[20] Xwa B,  Xla B,  Zl B, et al. Dynamic recoil response of tensioner and riser coupled in an emergency disconnection scenario[J]. Ocean Engineering,Volume,2022(247):110730.

PDF(3185 KB)

227

Accesses

0

Citation

Detail

段落导航
相关文章

/