通过对结构中不同构件承载力关系进行不等式迭代分析,建立了中心支撑钢框架结构屈服机制控制方法,结合改进的遗传算法,以结构总重为目标函数,提出了基于屈服机制控制的结构优化分析方法。通过现有试验、48个有限元模型及多个中心支撑钢框架结构实例,分别针对结构屈服机制控制方法及本文优化方法的计算效率、准确性进行验证分析。结果表明:屈服机制控制方法能保证结构构件按照预设置顺序屈服,而在实际应用过程中,不宜选取灵敏度较高的范围边缘参数,但应在参数范围内选取外径较大的支撑截面参数避免受压支撑过早屈服;利用参数范围进行优化分析,可有效减小优化搜索初始解域,提高优化分析的计算效率。
Abstract
Based on the inequality interactive analysis of the different structural components bearing capacity, the yield mechanism control method of steel concentrically braced frame was proposed. Then, the improved genetic algorithm was used to propose the structural optimization method based on the yield mechanism control with the structural total weight as the objective function. Furthermore, the published experimental data, 48 finite element models and several steel concentrically braced frame examples were verified the validity of the structural yield mechanism control method, the computational efficiency and accuracy of the optimization method. The results show that the component parameter ranges calculated by the proposed method could effectively control the yield sequence of the structural components. In the engineering practice application, the sequence is, however, highly sensitive to components’ parameter values, which was not suitable for selecting the maximum or minimum values of range. The brace’s external diameter should be selected larger within the parameter range to avoid premature yield of compression brace. Meanwhile, the parameter ranges calculated by the yield mechanism method also could greatly reduce the initial solution domain space, which could improve the computational of the optimization analysis.
关键词
中心支撑钢框架结构 /
屈服机制控制 /
不等式迭代 /
优化方法 /
有限元分析
{{custom_keyword}} /
Key words
steel concentrically braced frame /
yield mechanism control /
iterative computation of inequality /
optimization method /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 乔惠云,魏建鹏,田黎敏.中心支撑钢框架在空腹效应作用下抗连续倒塌分析[J].振动与冲击,2019, 38(24):115-121+ 157.
QIAO Huiyun, WEI Jianpeng, TIAN Limin. Anti-progressive collapse analysis for steel concentrically braced frame under Vierendeel action[J]. Journal of Vibration and Shock, 2019, 38 (24):115-121+157.
[2] 高承勇,安东亚.耗能型屈曲约束支撑在结构设计中的合理应用与参数控制[J].建筑结构学报,2016, 37(06): 69-77.
GAO Chengyong, AN Dongya. Application and parameter controlling for dissipative BRB in structural design[J]. Journal of Building Structures, 2016, 37(06): 69-77.
[3] GB 50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010.
GB 50011-2010. Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press,2010.
[4] GB 50017-2017.钢结构设计标准[S].北京:中国建筑工业出版社, 2017.
GB 50017-2017. Code for design of steel structures[S]. Beijing: China Architecture & Building Press,2017.
[5] 童根树,米旭峰.钢支撑设计方法对多层框架实际抗震性能的影响[J].工程力学,2008, 25(06): 107-115.
TONG Genshu, MI Xufeng. Aseismic behavior of multistory frames based on different braces design methods [J]. Engineering Mechanics, 2008,25(06): 107-115.
[6] LEELATAVIWAT S, GOEL S C, STOJADINOVIC B. Energy-based seismic design of structures using yield mechanism and target drift [J]. Journal of Structural Engineering, 2002, 128(08): 1046-1054.
[7] GOEL S C, CHAO S H. Performance-based plastic design-earthquake resistant steel structures [M]. America: International Code Council, 2008.
[8] SEPAHVAND M F, AKBARI J, KUSUNOKI K. Plastic design of moment resisting frames using mechanism control [J]. Journal of Constructional Steel Research, 2019, 153(02): 275-285.
[9] SEPAHVAND M F, AKBARI J, KUSUNOKI K. Optimum plastic design of moment resisting frames using mechanism control [J]. Structures, 2018, 16(02): 254-268.
[10] 熊二刚,张倩.中心支撑钢框架结构基于性能的塑性抗震设计[J].振动与冲击,2013, 32(19): 32-38.
XIONG Ergang, ZHANG Qian. Performance-based plastic design method for steel concentrically braced frames [J]. Journal of Vibration and Shock, 2013, 32(19): 32-38.
[11] 白久林,欧进萍.基于能量平衡的钢筋混凝土框架结构抗震塑性设计方法[J]. 建筑结构学报,2012, 33(10): 22-31.
BAI Jiulin, OU Jinping. Seismic plastic design of RC frame structure based on energy balance [J]. Journal of Building Structures, 2012, 33(10): 22-31.
[12] MAZZOLANI M F, PILUSO V. Plastic design of seismic resistant steel frames [J]. Earthquake Engineering & Structural Dynamics, 1997, 26(02): 167-191.
[13] MASTRANDREA L, PILUSO V. Plastic design of eccentrically braced frames, II: Failure mode control [J]. Journal of Constructional Steel Research, 2008, 65(05): 1015-1028.
[14] LONGO A, MONTUORI R, PILUSO V. Failure mode control of X-braced frames under seismic actions [J]. Journal of Earthquake Engineering, 2008,12(05):728-759.
[15] LONGO A, MONTUORI R, PILUSO V. Plastic design of seismic resistant V-braced frames [J]. Journal of Earthquake Engineering, 2008, 12(08): 1246-1266.
[16] 何浩祥,王文涛,吴山.基于均匀变形和混合智能算法的框架结构抗震优化设计[J].振动与冲击,2020,39(04):113-121.
HE Haoxiang, WANG Wentao, WU Shan. Aseismic optimization design of a frame structure based on uniform deformation and hybrid intelligent algorithm [J]. Journal of Vibration and Shock, 2020, 39(04): 113-121.
[17] 何嘉年,王湛.半刚性连接钢框架结构体系优化设计[J].土木工程学报,2015, 48(S1): 98-103.
HE Jianian, WANG Zhan. An optimal design for steel frame structural systems of semi-rigid connections [J]. China Civil Engineering Journal, 2015, 48(S1): 98-103.
[18] 陈鑫,李爱群,李启才,等.基于满意度原理的自立式高耸钢结构环形TLCD控制多目标优化设计[J].振动与冲击,2017, 36(10): 190-196.
CHEN Xin, LI Aiqun, LI Qicai, et al. Multi-objective optimal design of the ring shaped TLCD control of self-standing high-rise steel structures based on the satisfactory degree principle [J]. Journal of Vibration and Shock, 2017, 36(10): 190-196.
[19] 冯鹏,强翰霖,叶列平.材料、构件、结构的“屈服点”定义与讨论[J].工程力学,2017, 34(03): 36-43.
FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures [J]. 2017, 34(03): 36-43.
[20] 杨融谦,周学军.基于不同构造形式半刚性节点的人字形中心支撑钢框架低周往复荷载试验研究[J].建筑钢结构进展,2021, 23(12): 75-84.
YANG Rongqian, ZHOU Xuejun. Low-cyclic reversed loading tests of chevron concentrically braced steel frames with semi-rigid connections of different details [J]. Progress in Steel Building Structures, 2021, 23(12): 75-84.
[21] LAI J W. Experimental and analytical studies on the seismic behavior of conventional and hybrid braced frames [D]. Berkeley: University of California, 2012.
[22] SEN A D, SLOAT D, BALLARD R, et al. Experimental evaluation of the seismic vulnerability of braces and connections in older concentrically braced frames [J]. Journal of structural engineering, 2016, 142(09): 01-15.
[23] ROEDER C W, SEN A D, TERPSTRA C, et al. Effect of beam yielding on chevron braced frames [J]. Journal of Constructional Steel Research, 2019, 159(08): 428-441.
[24] 黄冀卓.钢框架体系优化设计研究[D].上海:同济大学, 2006.
HUANG Jizhuo. Study on optimal design of steel frame systems [D]. Shanghai: Tongji University, 2006.
[25] 李彬,王湛,王鹏,等.两边连接暗支撑预制墙板抗震性能分析[J].振动与冲击,2022, 41(09): 9-17+40.
LI Bin, WANG Zhan, WANG Peng, et al. Aseismic performance analysis of prefabricated wallboard with concealed braces connected on both sides [J]. Journal of Vibration and Shock, 2022, 41(09): 9-17+40.
[26] 冯冬青,王非,马雁.遗传算法中选择交叉策略的改进[J].计算机工程,2008,34(19):189-191.
FENG Dongqing, WANG Fei, MA Yan. Improvement of selection and crossover strategy in genetic algorithm [J]. Computer Engineering. 2008, 34(19):189-191.
[27] 易孝会. 人字形中心支撑钢框架近场地震反应分析[D]. 苏州:苏州科技学院, 2015.
YI Xiaohui. Near-field analysis of chevron braced steel frame [D]. Suzhou: Suzhou University of Science and Technology, 2015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}