2.5维有限元分析高铁荷载下准饱和横观各向同性地基振动特性

高广运1,2,耿建龙1,2,张其唯3,张璐璐1,2,司志鹏4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 298-308.

PDF(3051 KB)
PDF(3051 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 298-308.
论文

2.5维有限元分析高铁荷载下准饱和横观各向同性地基振动特性

  • 高广运1,2,耿建龙1,2,张其唯3,张璐璐1,2,司志鹏4
作者信息 +

25D finite element analysis for vibration characteristics of quasi-saturated transversely isotropic foundation under high-speed railway load

  • GAO Guangyun1,2, GENG Jianlong1,2, ZHANG Qiwei3, ZHANG Lulu1,2, SI Zhipeng4
Author information +
文章历史 +

摘要

为分析高铁荷载下准饱和横观各向同性地基振动特性,本文推导了准饱和横观各向同性地基2.5维有限元控制方程,建立了列车-轨道-准饱和横观各向同性地基2.5维有限元模型,对比研究了不同车速下饱和与准饱和横观各向同性地基的振动特性,分析了准饱和横观各向同性地基土体参数对振动特性的影响。研究结果表明:准饱和横观各向同性地基表面产生的向上和向下位移均大于饱和地基。不同车速下准饱和地基振动位移均大于饱和地基,但超静孔压远小于饱和地基;车速越高,饱和与准饱和地基表面振动位移越大而衰减越慢,超静孔压越大且衰减越快,轨道中心处准饱和与饱和地基位移相差越大。准饱和地基竖向振动位移和超静孔压随水平弹性模量和垂直弹性模量的增加而减小,随水平泊松比增加而增大,随垂直泊松比增加而减小,随垂直剪切模量增加而减小。垂直弹性模量较水平弹性模量对地面竖向振动位移影响更大。与水平泊松比相比,垂直泊松比对准饱和横观各向同性地基竖向振动位移峰值和超静孔压影响更大。

Abstract

To analyze the ground vibration due to high-speed train moving on quasi-saturated transversely isotropic foundation, the 2.5-dimensional finite element (2.5D FE) control equations of quasi-saturated transversely isotropic soil were proposed. A 2.5D FE model involving train, track, quasi-saturated transversely isotropic foundation was established. The ground vibration of saturated and quasi-saturated transversely isotropic foundations were compared at different train speeds. The influence of soil parameters on vibration characteristics of quasi-saturated transversely isotropic foundations were analyzed. The results show that the upward and downward ground displacements of the quasi-saturated transversely isotropic foundation are larger than those of the saturated once. The displacement of quasi-saturated foundation is larger than that of saturated foundation at different train speeds, but the excess pore water pressure is much smaller than that of saturated foundation. The higher the train speed, the larger ground vibration displacement of saturated and quasi-saturated foundations but the slower attenuation, the larger excess pore pressure in the two types of foundations and faster the attenuation, the greater displacement difference between the quasi-saturated foundation and the saturated once. The vertical vibration displacement and excess static pore pressure of the quasi-saturated foundation decrease with increasing horizontal elastic modulus and vertical once, increasing with increasing horizontal Poisson's ratio, decreasing with increasing vertical Poisson's ratio, decreasing with increasing shear modulus. The vertical elastic modulus has a greater influence on the vertical vibration displacement than horizontal elastic modulus. Compared with the horizontal Poisson's ratio, the vertical once has a greater influence on the vertical vibration displacement peak and excess static pore pressure.

关键词

高铁 / 准饱和横观各向同性地基 / 2.5维有限元模型 / 地面振动 / 土体参数

Key words

high-speed railway / quasi-saturated transversely isotropic foundation / 2.5D FEM / ground vibration / soil parameters?

引用本文

导出引用
高广运1,2,耿建龙1,2,张其唯3,张璐璐1,2,司志鹏4. 2.5维有限元分析高铁荷载下准饱和横观各向同性地基振动特性[J]. 振动与冲击, 2023, 42(15): 298-308
GAO Guangyun1,2, GENG Jianlong1,2, ZHANG Qiwei3, ZHANG Lulu1,2, SI Zhipeng4. 25D finite element analysis for vibration characteristics of quasi-saturated transversely isotropic foundation under high-speed railway load[J]. Journal of Vibration and Shock, 2023, 42(15): 298-308

参考文献

[1] 郑拓. 我国高速铁路与经济发展研究[J]. 铁道学报, 2020, 42(07): 34-41.
ZHENG Tuo. Research on development of China’s high-speed railway and economy[J]. Journal of the China Railway Society, 2020, 42(07): 34-41.
[2] 高广运,李宁,何俊锋,等. 列车移动荷载作用下饱和地基的地面振动特性分析[J]. 振动与冲击, 2011, 30(06): 86-92.
GAO Guang-yun, LI Ning, HE Jun-feng, et al. Analysis of ground vibration generated by train moving loads on saturated soil[J]. Journal of Vibration and Shock, 2011, 30(06): 86-92.
[3] TAKEMIYA H, BIAN X C. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics, 2005, 131(7): 699-711.
[4] PICOUX B, LE HOUÉDEC D. Diagnosis and prediction of vibration from railway trains[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(12): 905-921.
[5] 巴振宁,金威,梁建文. 层状饱和地基-轨道-列车耦合系统轨道不平顺引起的振动分析[J]. 振动与冲击, 2015, 34(15): 88-97.
BA Zhen-ning, JIN Wei, LIANG Jian-wen. Vibration analysis of layered saturated ground-track-vehicle coupling system induced by track irregularities [J]. Journal of Vibration and Shock, 2015, 34(15): 88-97.
[6] 王滢,高广运. 准饱和土中圆柱形衬砌的瞬态动力响应分析[J]. 岩土力学, 2015, 36(12): 3400-3409.
WANG Ying, GAO Guang-yun. Analysis of transient dynamic response of cylindrical lined cavity in nearly saturated soil[J]. Rock and Soil Mechanics, 2015, 36(12): 3400-3409.
[7] LEONG E C, CHENG Z Y. Effects of confining pressure and degree of saturation on wave velocities of soils[J]. International Journal of Geomechanics, 2016, 16(6): D4016013.
[8] 袁宗浩,胡伟波,戴凯鑫,等. 黏弹性边界对准饱和土中圆形衬砌隧道动力响应影响研究[J]. 应用力学学报, 2021, 38(05): 2105-2110.
YUAN Zong-hao, HU Wei-bo, DAI Kai-xin, et al. Research on the influence of Visco-elastic Boundary on dynamic responses of a circular lining tunnel in nearly saturated soils[J]. Chinese Journal of Applied Mechanics, 2021, 38(05): 2105-2110.
[9] 高华喜,闻敏杰. 黏弹性准饱和土中球空腔动力特性[J]. 力学学报, 2012, 44(4): 753-761.
GAO Hua-xi, WEN Min-jie. Dynamic characteristics of a spherical cavity in nearly saturated viscoelastic soil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 753-761.
[10] YE J H, JENG D S. Three-dimensional dynamic transient response of a poro-elastic unsaturated seabed and a rubble mound breakwater due to seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2013, 44(1): 14-26.
[11] WANG Y, GAO G Y, YANG J, et al. The influence of the degree of saturation on dynamic response of a cylindrical lined cavity in a nearly saturated medium[J]. Soil Dynamics and Earthquake Engineering, 2015, 71(8): 27-30.
[12] 高广运,张其唯,毕俊伟. 高铁荷载下准饱和分层地基环境振动特性研究[J]. 噪声与振动控制, 2020, 40(03): 181-187.
GAO Guang-yun, ZHANG Qi-wei, BI Jun-wei. Analysis of ground vibration caused by high speed railway on quasi-saturated layered subgrade[J]. Noise and Vibration Control, 2020, 40(03): 181-187.
[13] GAO G Y, ZHANG J Y, CHEN J, et al. Investigation of saturation effects on vibrations of nearly saturated ground due to moving train loads using 2.5D FEM[J]. Soil Dynamics and Earthquake Engineering, 2022, 158: 107288.
[14] 李义成,冯世进. 列车轴载作用下轨道-横观各向同性地基动力响应[J]. 岩土力学, 2021, 42(05): 1313-1324.
LI Yi-chen, FENG Shi-jin. Dynamic response of a track coupled with a transversely isotropic ground due to train axle loads[J]. Rock and Soil Mechanics, 2021, 42(05): 1313-1324.
[15] 高广运,陈功奇,李佳. 高速列车荷载作用下横观各向同性饱和地基动力特性的数值分析[J]. 岩石力学与工程学报, 2014, 33(01): 189-198.
GAO Guang-yun, CHEN Gongqi, LI Jia. Numerical analysis of dynamic characteristic of transversely isotropic saturated soil foundation subjected to high-speed train load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(01): 189-198.
[16] 梁建文,吴孟桃,巴振宁. 移动荷载作用下TI饱和半空间动力响应分析[J]. 振动.测试与诊断, 2020, 40(06): 1112-1119+1231-1232.
LIANG Jian-wen, WU Meng-tao, BA Zhen-ning. Dynamic response analysis of transversely isotropic saturated half-space under moving loads[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(06): 1112-1119+1231-1232.
[17] YANG Y B, HUNG H H. A 2.5D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads[J]. International Journal for Numerical Methods in Engineering, 2001, 51: 1317-1336.
[18] 高华喜,闻敏杰,张斌. 具有圆形隧道的准饱和黏弹性土振动响应[J]. 浙江大学学报(工学版), 2013, 47(04): 615-621.
GAO Hua-xi, WEN Min-jie, ZHANG Bin. Dynamic response of nearly saturated viscoelastic soil with circular tunnel[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(04): 615-621.
[19] 高广运,何俊锋,杨成斌,等. 2.5维有限元分析饱和地基列车运行引起的地面振动[J]. 岩土工程学报, 2011, 33(2): 234-241.
GAO Guang-yun, HE Jun-feng, YANG Cheng-bin, et al. Ground vibration induced by trains moving on saturated ground using 2.5D FEM [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 234-241.
[20] 吴争光,张华. 封闭气泡对土体渗透系数影响的试验研究[J]. 工程勘察, 2012, 40(09): 43-47.
WU Zheng-guang, ZHANG Hua. Experimental study on the influence of entrapped air to permeability coefficient of soil[J]. Geotechnical Investigation and Surveying, 2012, 40(09): 43-47.
[21] TAKEMIYA H. Simulation of track-ground vibrations due to a high-speed train: the case of X2000 at Ledsgard[J]. Journal of Sound and Vibration, 2003, 261(3): 503-526.
[22] ZHAI W M, WEI K, SONG X L, et al. Experimental investigation into ground vibrations induced by very high speed trains on a non-ballasted track[J]. Soil Dynamics and Earthquake Engineering, 2015, 72(2): 24-36.
[23] ISO. ISO2631-2: Mechanical vibration and shock evaluation of human exposure to whole body vibration part 2: vibration in buildings (1 Hz to 80 Hz) [S]. Washington DC: ISO, 2003.
[24] 边学成,陈云敏,胡婷. 基于2.5维有限元方法模拟高速列车产生的地基振动[J]. 中国科学(G辑:物理学力学天文学),2008(5): 600-617.
BIAN Xue-cheng, CHEN Yun-min, HU Ting. Numerical simulation of high-speed train induced ground vibrations using 2.5D finite element approach [J]. Science China Physics, Mechanics & Astronomy, 2008, 38(5): 600-617.
[25] 王子辉,赵成刚,董亮. 流体饱和多孔介质黏弹性动力人工边界[J]. 力学学报, 2006, 38(5): 605-611.
WANG Zi-hui, ZHAO Chen-gang, DONG Liang. A viscous-spring dynamical artifical boundary dor saturated porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 605-611.
[26] 朱赞成,王小岗. 浙东南海相沉积土各向异性参数测定[J]. 贵州大学学报(自然科学版), 2010, 27(01): 103-107.
ZHU Zan-cheng, WANG Xiao-gang. Test on transversely isotropy parameters of natural marine deposits clay in southeast Zhejiang[J]. Journal of Guizhou University(Natural Sciences), 2010, 27(01): 103-107.
[27] LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573-586.
[28] 陈湘亮,王永和,王灿辉. 高速铁路过渡段路基自振频率的模态分析与试验[J]. 中南大学学报(自然科学版), 2012, 43(01): 322-327.
CHEN Xiang-liang, WANG Yong-he, WANG Can-hui. Modal analysis and experiment research on natural frequencies of transition section subgrade of high-speed railway[J]. Journal of Central South University (Science and Technology), 2012, 43(01): 322-327.
[29] 屈畅姿,王永和,魏丽敏,等. 武广高速铁路路基振动现场测试与分析[J]. 岩土力学, 2012, 33(5): 1451-1461.
QU Chang-zi, WANG Yong-he, WEI Li-min, et al. In-situ test and analysis of vibration of subgrade for Wuhan-Guangzhou high-speed railway [J]. Rock and Soil Mechanics, 2012, 33(5): 1451-1461.
[30] 李佳. 高速列车荷载作用下横观各向同性土体动力特性的2.5维有限元法分析[D]. 上海: 同济大学, 2012.
[31] 胡静,唐跃,张家康,等. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 2021, 42(11): 3169-3181.
HU Jin, TANG Yue, ZHANG Jia-kang, et al. Dynamic responses of saturated soft soil foundation under high speed train[J]. Rock and Soil Mechanics, 2021, 42(11): 3169-3181.
[32] 周凤玺,柳鸿博. 非饱和土中Rayleigh波的传播特性分析[J]. 岩土力学, 2019, 40(08): 3218-3226+3273.
ZHOU Feng-xi, LIU Hong-bo. Propagation characteristics of Rayleigh waves in unsaturated soils[J]. Rock and Soil Mechanics, 2019, 40(08): 3218-3226+3273.

PDF(3051 KB)

Accesses

Citation

Detail

段落导航
相关文章

/