基于电磁控制的屈曲约束支撑拟静力试验研究

李晓东,任杰,闫鹏亮,马顺利,吴健

振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 309-318.

PDF(2913 KB)
PDF(2913 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (15) : 309-318.
论文

基于电磁控制的屈曲约束支撑拟静力试验研究

  • 李晓东,任杰,闫鹏亮,马顺利,吴健
作者信息 +

Quasi-static tests of buckling restrained brace based on electromagnetic control

  • LI Xiaodong, REN Jie, YAN Pengliang, MA Shunli, WU Jian
Author information +
文章历史 +

摘要

屈曲约束支撑是一种耗能减隔震构件,近年来已被广泛应用在工程实例中。但是将屈曲约束支撑和控制相结合的研究较少。基于此本文研制出一种新型屈曲约束支撑,即基于电磁控制的屈曲约束支撑(Electromagnetic buckling restrained brace,EBRB)。本文对6组EBRB进行拟静力试验进行滞回曲线、骨架曲线、延性性能、刚度退化、耗能能力等性能指标分析,并推导出振动控制所需电磁力的计算公式。试验结果表明:通过对电磁力的推导的理论值和试验中产生的电磁力的实际值的比对发现两者的差值在8%左右,当EBRB填充材料为LC30芯材为Q235钢时其耗能能力是填充材料为C30芯材为DT4的1.08倍,延性性能是填充材料为C30芯材为DT4的1.2倍,并在电磁力的控制下构件的的抗震性能是不加电磁力的控制的1.3-1.5倍,提高了传统的屈曲约束支撑的抗震性能,在工程实例中具有较好的应用前景。

Abstract

Buckling restrained brace is known as an energy dissipative vibration isolation component that has recently been extensively applied in engineering instances. There have been few trials that combine buckling restrained brace with control. Based on this research, a new form of buckling restricted brace, electromagnetic buckling restrained brace (EBRB) based on electromagnetic control, is created. In this study, six sets of EBRBs are investigated in the suggested static test for hysteresis curve, skeleton curve, ductility performance, stiffness degradation, energy dissipation capacity, and other performance indices, and the electromagnetic force necessary for vibration control is calculated. The test results show that the difference between the theoretical value of the derived electromagnetic force and the actual value of the electromagnetic force generated in the test is about 8%, and the EBRB's energy dissipation capacity is 1.08 times that of DT4 when the LC30 core filling material is Q235 steel, and the ductility performance is 1.2 times that of DT4 when the C30 core filling material is DT4. The seismic performance of the member under electromagnetic force control is 1.3-1.5 times that of the member without electromagnetic force control, which improves the seismic performance of the traditional buckling restrained brace and has a promising application prospect in the engineering example.

关键词

屈曲约束支撑 / 控制电磁力 / 拟静力试验 / 抗震性能

Key words

buckling restrained bracing / controlled electromagnetic force / proposed static test / seismic performance

引用本文

导出引用
李晓东,任杰,闫鹏亮,马顺利,吴健. 基于电磁控制的屈曲约束支撑拟静力试验研究[J]. 振动与冲击, 2023, 42(15): 309-318
LI Xiaodong, REN Jie, YAN Pengliang, MA Shunli, WU Jian. Quasi-static tests of buckling restrained brace based on electromagnetic control[J]. Journal of Vibration and Shock, 2023, 42(15): 309-318

参考文献

[1] 范华冰, 张书强, 李宏胜, 等. 屈曲约束支撑在展览建筑中的应用及其抗震性能分析[J]. 建筑结构,2020, 50(16):77-81+28.
Fan Huabing, Zhang Shuqiang, Li Hongsheng, et al. Application and seismic performance analysis of buckling restrained braces in exhibition building[J]. Building Structure, 2020,50(16):77-81+28.
[2] Wang Jingfeng, Wang Xinle, Li Beibei ,et al. Experimental studies on seismic performance of prefabricated concrete frame structures with buckling-restrained braces[J]. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2018, 51(012):72-80.
[3] Xie Q, Zhou Z, Meng S P . Experimental investigation of the hysteretic performance of self-centering buckling-restrained braces with friction fuses[J]. Engineering Structures, 2020, 203:109865.
[4] 邵  冰, 苏英强, 邹海涛, 等. 高层钢管混凝土框架-屈曲约束支撑结构多因素减震效果研究[J/OL]. 建筑钢结构进展:1-13[2022-04-28].
Shao Bing, Su Yingqiang, Zou Haitao, et al. Study on multi factor seismic mitigation effect of high-rise concrete filled steel tubular frame with buckling restrained braces [J/OL].  Progress in Building Steel Structures: 1-13 [2022-04-28].
[5] 谢  钦, 周  臻, 孔祥羽, 等. 梁柱退化和剪力比对自定心BRB双重体系抗震性能的影响[J]. 振动与冲击,2018,37(08):9-16.
Xie Qin, Zhou Zhen, Kong Xiangyu, et al. The effect of beam-column degradation and shear ratio on seismic performance of self-centering BRB dual systems [J]. Vibration and Impact, 2018,37(08):9-16.
[6] 冯玉龙, 吴  京, 孟少平, 等. 底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J]. 振动与冲击,2016,35(23):35-40.
Feng Yulong, Wu Jing, Meng Shaoping, et al. Aseismic performance analysis of rocking wall frame structures with
buckling-restrained braces in base [J]. Vibration and Impact, 2016,35(23):35-40.
[7] 张  哲, 裴  升, 邓恩峰. 高强钢框架-屈曲约束支撑体系抗震性能研究[J]. 振动与冲击,2022,41(01):244-253.
Zhang Zhe, Pei Sheng, Deng Enfeng. Seismic behavior of high strength steel frame-buckling restrained brace system [J]. Vibration and Impact, 2022,41(01):244-253.
[8] Yin Zhanzhong ,Yang Bo, Zhang Xiaobo. Design of an eccentrically buckling-restrained braced steel frame with web-bolted replaceable links[J]. Journal of Constructional Steel Research, 2022, 192.
[9] Ding Yukun , Zhao Chuanzhen. Cyclic tests for assembled X-shaped buckling restrained brace using two unconnected steel plate braces[J]. Journal ofConstructional Steel Research,2021, 182.
[10] 张超众,郭小农,朱劭骏,等.装配式自复位屈曲约束支撑滞回性能[J]. 同济大学学报(自然科学版),2021,49(01):8-19.
Zhang Chaozhong, Guo Xiaonong, Zhu Shaojun, et al. Hysteretic behavior of assembled self-
centering buckling-restrained brace [J]. Journal of Tongji University (Natural Science Edition), 2021,49(01):8-19.
[11] Nader Hoveidae ,Saeed Radpour. A novel all-steel buckling restrained bracefor seismic drift mitigation of steel frames[J]. Bulletin of Earthquake Engineering,2021:1-31.
[12] 钟根全,周  云,曹邕生,等. 钢板装配式屈曲约束支撑RC框架平面外力学性能试验研究[J]. 土木工程学报,2020,53(11):74-80.
Zhong Genquan,Zhou Yun,Cao Yongsheng,et al. Experimental study on out-of-plane mechanical performance of steel-plate assembled buckling-restrained braced RC frame J]. China Civil Engineering Journal, 2020, 53(11): 74-80.
[13] Herian Leyva. Multi-objective seismic design of BRBs-reinforced concretebuildings using genetic algorithms[J]. Structural and MultidisciplinaryOptimization, 2021:1-16.
[14] 陈  泉. 屈曲约束支撑滞回性能及框架抗震能力研究[D]. 南京: 东南大学,2016.
Chen Quan. Research on hysteretic behavior of buckling restrained braces and seismic capacity of frames [D]. Nanjing: Southeast University, 2016.
[15] Wang Jingfeng,Lu Li ,Beibei. Subassemblage tests and analysis of buckling-restrained braced reinforced concrete frames with various gusset connections[J]. Structures, 2022, 39-56.
[16] ChaoYuetal. Effect of DT4 Inter layer on Properties of Hot-roll BondingTA2/Q235B [J]. Plate IOP Conference Series:Materials Science andEngineering,2017,229(1) .
[17] 陈俊云,孙磊,靳田野,等. 无粘结剂层状BN增韧cBN刀具材料的研究[J/OL]. 无机材料学报:1-6[2021-08-17].
Chen Junyun,Sun Lei,Jin Tianye, et al. Research on binder-free layered BN toughened cBN tool materials [J/OL].Journal of Inorganic Materials:1-6 [2021-08-17].
[18] 张振凯,彭勇波. 结构半主动控制磁流变阻尼器流变学模型研究[J]. 振动工程学报,2020,33(03):494-502.
Zhang Zhenkai, Peng Yongbo.Rheological models of MR dampers applied in semi-active control of structures J]. Journal of Vibration Engineering, 2020, 33(03):494-502.
[19] 张东彬. 新型半主动控制隔震体系理论与应用研究[D].北京: 清华大学,2019.
Zhang Dongbin. Research on the theory and application of a new type ofsemi-active control isolation system [D]. Beijing:Tsinghua University, 2019.
[20] GB50011-2010建筑抗震设计规范[S]. 北京: 中国建筑工业出版社,2010.
GB50011-2010 Code for Seismic Design of Buildings [S]. Beijing: ChinaBuilding Industry Press, 2010.
[21] ITO Yasuaki. Opposed Horizontal Edge Support Type Electromagnetic Levitation System for Ultra-flexible [J]. The Proceedings of Mechanical Engineering Congress,Japan,2019.

PDF(2913 KB)

Accesses

Citation

Detail

段落导航
相关文章

/