从分析力学思想和动力学基本原理出发,对刚体为主的质点系碰撞问题解法进行系统归纳和拓展延伸。从动量定理的积分形式引入惯性冲量,类比d’Alembert原理得到求解碰撞问题的动静法,进一步结合虚功原理推导了碰撞问题的d’Alembert- Lagrange方程,简化了多约束、多刚体的机构碰撞问题的分析过程。将Lagrange方程在任意碰撞时程内积分,建立了在碰撞任意瞬时系统速度与碰撞冲量间的关系,并经微分运算推导出相对动能表达的Lagrange状态方程,形式简洁新颖。最后的实例验证和演绎了前述结论及其具体应用方式。
Abstract
Based on the theory of analytical mechanics and the basic principle of dynamics, the collision problem solution methods of rigid body were generalized and extended. Starting from the integral form of the momentum theorem, the inertial impulse was introduced, then the dynamic-static method for collisions was obtained by analogy with the d'Alembert principle. Furthermore, combined with the virtual work principle, the d'Alembert-Lagrange equation of collisions was derived, which simplified the analysis process of multi-constraint and multi-rigid body mechanism collision problems. By integrating Lagrange equation in arbitrary time period of collision, the relation between arbitrary instantaneous velocity of a system and impulse of collision was established, and the Lagrange equation of state expressed by relative kinetic energy was derived by differential operation, whose form is simple and innovative. Finally, several typical examples were given to verify the above conclusion and deduce their specific application.
关键词
碰撞;惯性冲量;碰撞的d&rsquo /
Alembert-Lagrange方程;相对动能;碰撞Lagrange方程
{{custom_keyword}} /
Key words
collision /
inertial impulse /
d'Alembert-Lagrange equation for collisions /
relative kinetic energy /
Lagrange equation for collisions
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Tian S, Fu J, Chen J. A numerical method for multi-body separation with collisions [J]. Aerospace Science and Technology, 2021,109:106426.
[2] 闫 明, 顾西平, 金映丽, 等. 基于两体碰撞的冲击放大机理研究[J]. 振动与冲击, 2022,41(06):245-249.
YAN Ming, GU Xi-ping, JIN Ying-li, et al. Study on impact amplification mechanism based on two-body collision [J]. Journal of vibration and shock, 2022,41(06):245-249.
[3] Da Costa D R, Silva M R, Leonel E D, et al. Statistical description of multiple collisions in the Fermi-Ulam model[J]. Physics Letters A, 2019,383(25):3080-3087.
[4] Liu Z, Amdahl J. On multi-planar impact mechanics in ship collisions[J]. Marine Structures, 2019,63:364-383.
[5] Van Wal S, Tardivel S. Effects of restitution, friction, and attitude on 2D low-velocity rigid-body impacts[J]. Advances in Space Research, 2021,67(1):411-435.
[6] 刘延柱, 朱本华, 杨海兴. 理论力学(第3版)[M]. 北京: 高等教育出版社, 2009.
LIU Yan-zhu, ZHU Ben-hua, YANG Hai-xing. Theoretical Mechanics [M]. 3rd ed.Beijing: Higher Education Press, 2009.
[7] 王 铎. 理论力学(第7版)[M]. 北京: 高等教育出版社, 2009.
WANG Duo. Theoretical Mechanics [M]. 7th ed. Beijing: Higher Education Press, 2009.
[8] 张建军, 孙秀全, 张正军. 理论力学[M]. 北京: 科学出版社, 2005.
ZHANG Jian-jun, SUN Xiu-quan, ZHANG Zhen-jun. Theoretical Mechanics [M]. Beijing: Science Press, 2005.
[9] A.P.马尔契夫. 理论力学[M]. 李俊峰, 译. 北京: 高等教育出版社, 2006.
A.P.Markryrv. Theoretical Mechanics [M]. LI Jun-feng. Beijing: Higher Education Press, 2006.
[10] Newton S. Philosophiae naturalis principia mathematica[M]. Scotland: Innys, 1726. MacLehose, 1871, 1871.
[11] 隋允康. 按达朗伯原理求解冲击问题和计算冲击时间[J]. 力学与实践, 2002, 06: 61-64.
SUI Yun-kang. According to d 'alembert's principle to solve the impact problem and calculate the impact time [J]. Mechanics in Engineering, 2002, 06: 61-64.
[12] 费章惠. 在碰撞问题中的动静法[J]. 力学与实践, 1990, 04: 47-49.
FEI Zhang-hui. Dynamic-static method in collision problems [J]. Mechanics in Engineering, 1990, 04: 47-49.
[13] 赵文礼, 王林泽. 解决碰撞问题的动静法[J]. 力学与实践, 1992, 06: 49-52.
ZHAO Wen-li, WANG Lin-ze. Dynamic-static method for solving collision problems [J]. Mechanics in Engineering, 1992, 06: 49-52.
[14] 陈文良, 洪嘉振, 周鉴如. 分析动力学[M]. 上海: 上海交通大学出版社, 1990.
CHEN Wen-liang, HONG Jia-zhen, ZHOU jian-ru. Analytical dynamics [M]. Shanghai: Shanghai Jiaotong University Press, 1990.
[15] 金栋平, 胡海岩. 碰撞振动与控制[M]. 北京: 科学出版社, 2005.
JIN Dong-ping, HU Hai-yan. Collision vibration and control [M]. Beijing: Science Press, 2005.
[16] 赵文礼, 张 威. 解决碰撞问题的分析法[J]. 力学与实践, 1994, 06: 55-56.
ZHAO Wen-li, ZHANG Wei. Analysis method for solving collision problems [J]. Mechanics in Engineering, 1994, 06: 55-56.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}