球墨铸铁具有优良的力学性能被广泛应用在各工业领域,其内部的石墨形态和分布情况会影响其各项力学性能。相比于石墨球化率,石墨大小的表征研究相对较少,对球墨铸铁的石墨大小及表层硬度进行无损评定具有重要的工程意义。浇注了不同石墨大小和基体组织的球墨铸铁试件,对试件进行了金相观察及硬度试验。基于临界折射纵波(longitudinal critical refraction,LCR波)和瑞利波(Rayleigh波)模型,利用超声波声速及超声非线性系数表征球墨铸铁石墨大小及表层硬度。结果表明:LCR波的超声非线性系数随着表面硬度的增大而增大,随着石墨平均直径的增大而减少,并且相比超声波声速具有更高的灵敏度;LCR波的超声非线性系数的增加与微观组织中的晶界数量和碳化物的增加有关。因此,可以利用LCR波的超声非线性系数表征球墨铸铁的石墨大小和表面硬度,建立微观组织、超声非线性系数及机械性能之间的关系。
Abstract
Ductile cast iron has excellent mechanical properties and is widely used in various industrial fields, the internal graphite morphology and distribution will affect the mechanical properties. Compared with the spheroidization rate of graphite, there is less research on the characterization of graphite size. It is of great engineering significance to evaluate the graphite size and surface hardness of ductile cast iron by a non-destructive method. Ductile cast iron specimens with different graphite sizes and matrix structures were poured, the metallographic observation and hardness test were carried out. Based on the critical refraction longitudinal (LCR) wave and surface Rayleigh wave models, the graphite size and surface hardness were characterized using acoustic wave velocity and ultrasonic nonlinear coefficient. The results show that the ultrasonic nonlinear coefficient of LCR wave increases with the increase of surface hardness and decreases with the increase of graphite size, and it has higher sensitivity than the ultrasonic velocity; The increase of LCR wave ultrasonic nonlinear coefficient is related to the increase of the number of graphite, grain boundaries, and carbides in the microstructure. Therefore, the graphite size and surface hardness of ductile cast iron can be characterized by the ultrasonic nonlinear parameter of the LCR wave, and the relationship between microstructure, ultrasonic nonlinear coefficient, and mechanical properties can be established.
关键词
球墨铸铁 /
非线性超声 /
石墨大小 /
表面硬度 /
超声非线性系数 /
超声波声速
{{custom_keyword}} /
Key words
ductile cast iron /
nonlinear ultrasonic /
graphite size /
surface hardness /
nonlinear ultrasonic parameter /
acoustic wave velocity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 占连扬,刘柯,杨友杰,等.球墨铸铁QT400-18的石墨球化率对超声声速的影响[J].无损检测,2017,39(11):36-38.
ZHAN Lianyang, LIU Ke, YANG Youjie, et al. Effect of spheroidization rate of graphite on the ultrasonic velocity of ductile cast iron QT400-18[J]. Nondestructive Testing, 2017, 39(11): 36-38.
[2] 门平,董世运,程志远,等.测量距离对超声表面波评价不同组织的材料表层硬度的影响[J].中国表面工程,2018,31(4):178–187.
MEN Ping, DONG Shiyun, CHENG Zhiyuan, et al. Effects of measurement distance on hardness evaluation of material surface with different microstructure by acoustic surface wave[J]. China Surface Engineering, 2018, 31(4): 178–187.
[3] 刘继雄,陈士华.球墨铸铁中石墨大小及球化率的测定[J].中国体视学与图像分析,2008,13(2):3.
LIU Jixiong, CHEN Shihua. Quantitative determination of the graphite size and its spheroidization rate in nodular cast iron[J]. Chinese Journal of Stereology and Image Analysis, 2008, 13(2): 3.
[4] 朱钱兵,张覃轶.球墨铸铁中球化率和石墨大小的数字评定[J].金属加工:热加工,2014,(17):89-91.
ZHU Qianbing, ZHANG Qinyi. Numerical evaluation of nodularity and graphite size in ductile cast iron[J]. Metal Forming: Hot Working, 2014, (17): 89-91.
[5] 韦江宇.机械零部件表面硬度无损检测的研究[J].黑龙江科技信息,2007:(11S),1.
WEI Jiangyu. Research on nondestructive testing of surface hardness of mechanical parts[J]. Heilongjiang Science and Technology Information, 2007, (11S):1.
[6] WASEEM O A, JEONG J R, Park B G, et al. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation[J]. Metals and Materials International, 2017, 23(6): 1257–1265.
[7] 张文杰.涡流技术在球墨铸铁硬度检测中的应用[J].现代铸铁,2016,36(06):34-37.
ZHANG Wenjie. Application of eddy current technology in hardness test of ductile iron[J]. Modern Casting, 2016, 36(06): 34-37.
[8] GUKENDRAN R, PARAMESHWARAN R, PONAPPA K. Characterization of case hardened AISI 4130 steel using eddy current testing[J]. Archives of Metallurgy and Materials, 2017, 62(3): 1833–1837.
[9] SORSA A, LEIVISK K, SANTA-AHO S, et al. Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement[J]. NDT & E International, 2012, (46): 100-106.
[10] VYLEZHNEV V P, MALYSHEV V S, SIMONOV Y N. A study of the structure of structural steels 33Kh3N3SM and 50RA by the method of Barkhausen effect[J]. Metal Science and Heat Treatment, 2015, 57(3-4): 1-5.
[11] DING S, TIAN G Y, MOORTHY V, et al. New feature extraction for applied stress detection on ferromagnetic material using magnetic Barkhausen noise[J]. Measurement, 2015, (73): 515-519.
[12] SUN G M, LIU H, HE C F, et al. A novel prediction method for hardness using auto-regressive spectrum of Barkhausen noise[J]. Journal of Nondestructive Evaluation, 2018, 37(4).
[13] SCHNEIDER D, BRENNER B, SCHWARZ T. Characterization of laser hardened steels by laser induced ultrasonic surface waves[J]. Journal of Nondestructive Evaluation, 1995, 14(1): 21-29.
[14] JHANG K Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(1): 123–135.
[15] DIB G, ROY S, RAMUHALLI P, et al. In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system[J]. Nuclear Engineering and Technology, 2019, 51(3): 867-76.
[16] WANG X, WANG X, NIU X, et al. Application of nonlinear ultrasonic technique to characterize the creep damage in ASME T92 steel welded joints[J]. NDT&E International, 2018, 98: 8-16.
[17] MATYSÍK M, PLKOVÁ I, CHOBOLA Z. Detection of reinforced concrete thermal damage by nonlinear ultrasonic spectroscopy[J]. Solid State Phenomena, 2019, 296: 143-148.
[18] HU H, ZOU Z, JIANG Y, et al. Finite element simulation and experimental study of residual stress testing using nonlinear ultrasonic surface wave technique[J]. Applied Acoustic, 2019, 154(19): 11-17.
[19] CHOI S, RYU J, KIM J S, et al. Comparison of linear and nonlinear ultrasonic parameters in characterizing grain size and mechanical properties of 304L stainless steel[J]. METALS, 2019, 9(12): 1279.
[20] Mao H L, Li Q Z, Mao H Y, et al. Nonlinear ultrasonic characterization of carburized case depth[J]. NDT&E International 2020, 112:102244.
[21] LIU M, KIM J Y, JACOBS L, et al. Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates-Feasibility of measuring residual stress[J]. NDT& E International, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}