考虑提离-滑移效应的核电结构-界面-地基相互作用模型研究

胡哲文1,2,李建波1,2,李志远1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 126-133.

PDF(2569 KB)
PDF(2569 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 126-133.
论文

考虑提离-滑移效应的核电结构-界面-地基相互作用模型研究

  • 胡哲文1,2,李建波1,2,李志远1,2
作者信息 +

Nuclear structure-interface-soil interaction model in consideration of uplift-slip effects

  • HU Zhewen1,2,LI Jianbo1,2,LI Zhiyuan1,2
Author information +
文章历史 +

摘要

强震作用下,核岛公共筏基可能发生的提离-滑移对结构受力影响明显,精细模拟建基面的接触状态并将结构-界面-地基作为整体分析,有助于明确提离-滑移效应对结构地震反应的影响机理。采用罚函数法接触模型模拟筏基-地基间的接触力学行为,等价线性法描述地基土的动力非线性,粘弹性人工边界模拟半无限地基的辐射阻尼条件,建立考虑提离-滑移效应的结构-界面-地基相互作用模型。进而,以AP1000核岛厂房为例,考虑静-动力综合作用,对比筏基-地基绑定简化模型,结构加速度响应峰值及楼层谱的峰值和形状均发生了明显变化,表明强震作用下筏基提离-滑移对抗震安全性造成不利影响,在核电结构抗震设防时应加以考虑。

Abstract

Under strong earthquake, the possible uplift-slip of the nuclear island common raft has a significant impact on the structural stress state. Refined simulation of the contact state on raft-soil interface and analyzing structure-interface-soil as a whole, are helpful to clarify the influence mechanism of uplift-slip effects on the seismic response of the structure. By applying the contact model named the penalty function method to simulate the contact mechanical behavior between the raft and the soil, the equivalent linear method for describing dynamic nonlinearity of the soil, and the viscoelastic boundary method for simulating radiation damping condition, a structure-interface-soil interaction model in consideration of uplift-slip effects was established. Furthermore, by applying the proposed model to evaluate the response of AP1000 nuclear island plant, the comparison of the simplified model of the raft-soil binding was achieved in consideration of the combined static and dynamic effects. The results showed that the peak of the structure acceleration response and the peak and the shape of the floor response spectrum changed obviously, which indicated that under strong earthquake uplift-slip of the raft had an adverse effect on the anti-seismic safety. It can be seen that uplift-slip effects should be considered in the seismic fortification of nuclear power structures.

关键词

提离-滑移 / 接触算法 / 核电结构 / 土-结构相互作用 / 强震

Key words

uplift-slip / contact algorithm / nuclear power structure / soil-structure interaction / strong earthquake

引用本文

导出引用
胡哲文1,2,李建波1,2,李志远1,2. 考虑提离-滑移效应的核电结构-界面-地基相互作用模型研究[J]. 振动与冲击, 2023, 42(6): 126-133
HU Zhewen1,2,LI Jianbo1,2,LI Zhiyuan1,2. Nuclear structure-interface-soil interaction model in consideration of uplift-slip effects[J]. Journal of Vibration and Shock, 2023, 42(6): 126-133

参考文献

[1] SEXTOS A G, MANOLIS G D, LOANNIDIS N, et al. Seismically induced uplift effects on nuclear power plants. Part 2: Demand on internal equipment[J]. Nuclear Engineering and Design, 2017, 318(Jul): 288-296.
[2] 尹训强, 刘小蒙, 王桂萱. 考虑强震激励的某核岛厂房非岩性地基不同处理方案的对比研究[J]. 地震工程学报YIN Xunqiang,LIU Xiaomeng,WANG Guixuan.Comparative study of different non-rock foundation treatment schemes for a nuclear plant subjected to earthquake excitation. China Earthguake Engineering Journal, 2017, 39(3): 443-451.
[3] JGJ79-2012. 建筑地基处理技术规范[S]. 北京: 中国建筑工业出版社, 2012.
[4] 朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(01): 129-142.
ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3d nonlinear response characteristics of the pile-raft-supported AP1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(01): 129-142.
[5] HOUSNER G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[6] BHAUMIK L, RAYCHOWDHURY P. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction[J]. Nuclear Engineering and Design, 2013, 265: 1078-1090.
[7] SONG Y H, LEE D G. An improved two-spring model for foundation uplift analysis[J]. Computers & Structures, 1993, 46(5): 791-805.
[8] 方英杰. 基础提离对上部结构动力反应的影响分析[D]. 武汉: 华中科技大学, 2016.
[9] SAXENA N, PAUL D K. Effects of embedment including slip and separation on seismic SSI response of a nuclear reactor building. Nuclear Engineering and Design, 2012, 247, 23–33.
[10] NAKAMURA N, YABUSHITA N, SUZUKI T, et al. Analyses of reactor building by 3D nonlinear FEM models considering basemat uplift for simultaneous horizontal and vertical ground motions[J]. Nuclear Engineering and Design, 2008, 238(12): 3551-3560.
[11] 王国波, 王亚西, 于艳丽, 等. 基础提离对核电站结构地震响应的影响分析[J]. 振动与冲击, 2015, 34(07): 228-233.
WANG Guobo, WANG Yaxi, YU Yanli, et al. Analysis on the influence of foundation uplift on structure seismic response[J]. Journal of Vibration and Shock, 2015, 34(07): 228-233.
[12] PENG L Y, KANG Y J, TANG Z Y, et al. Seismic performance of CAP1400 nuclear power station considering foundation uplift[J]. Shock and Vibration, 2018, Article ID 8761209, 16 pages.
[13] 徐静, 李宏男, 李钢, 等. 考虑桩-土-结构动力相互作用的输电塔地震反应分析[J]. 工程力学, 2009, 26(09): 24-29.
XU Jing, LI Hongnan, LI Gang, et al. Seismic response analysis of transmission tower in consideration of the pile-soil dynamic interaction[J]. Engineering Mechanics, 2009, 26(09): 24-29.
[14] 莊初立, 张永山, 汪大洋. 超设计地震作用下核岛结构三维震动响应与控制研究[J]. 振动与冲击, 2017, 36(16): 234-240.
ZHUANG Chuli, ZHANG Yongshan, WANG Dayang. A study on three-dimensional seismic vibration response and vibration control of a nuclear island structure under beyond-design earthquake[J]. Journal of Vibration and Shock, 2017, 36(16): 234-240.
[15] 刘晶波, 吕彦东. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报, 1998(03): 55-64.
LIU Jingbo, LV Yandong. A direct method for analysis of structure-foundation dynamic interaction[J]. China Civil Engineering Journal, 1998(03): 55-64.
[16] 林皋, 李志远, 李建波. 复杂地基条件下土–结构动力相互作用分析[J]. 岩土工程学报, 2021, 43(09): 1573-1580.
LIN Gao, LI Zhiyuan, LI Jianbo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(09): 1573-1580.
[17] 宋建希, 李建波, 林皋. 层状场址自由场动力分析的等价线性法研究[J]. 地震研究, 2016, 39(01): 126-130.
SONG Jianxi, LI Jianbo, LIN Gao. Research on equivalent linearization method for free field dynamic analysis of layer site[J]. Journal of Seismological Research, 2016, 39(01): 126-130.
[18] 王检耀, 刘铸永, 洪嘉振. 基于两种接触模型的柔性体间多次微碰撞问题研究[J]. 振动与冲击, 2018, 37(11): 202-206.
WANG Jianyao, LIU Zhuyong, HONG Jiazhen. Multi-micro impact among flexible bodies using two contact models[J]. Journal of Vibration and Shock, 2018, 37(11): 202-206.
[19] GB50007-2011. 建筑地基基础设计规范[S]. 北京: 中国建筑工业出版社, 2012.
GB50007-2011. Code for design of building foundation[S]. Beijing: China Architecture and Building Press, 2012.
[20] 赵万友. 接触问题的分析方法研究与工程应用[D]. 西安: 电子科技大学, 2007.
[21] 李静, 陈健云, 徐强, 等. AP1000核岛厂房考虑重力水箱流体-结构相互作用的地震易损性分析研究[J]. 振动与冲击, 2019, 38(04): 144-150+174.
LI Jing, CHEN Jianyun, XV Qiang, et al. Seismic fragility analysis of an AP1000 shield building considering the fluid-structure interaction of a passive gravity water box[J]. Journal of Vibration and Shock, 2019, 38(04): 144-150+174.
[22] HUO H, BOBET A, FERNANDEZ G, et al. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1522-1533.
[23] 丁英俊. 核电厂多阻尼楼层谱的人工波拟合[D]. 大连: 大连理工大学, 2019.

PDF(2569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/