基于Kriging模型和分层模型修正技术的结构边界条件识别

王一航,彭珍瑞

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 134-142.

PDF(1937 KB)
PDF(1937 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 134-142.
论文

基于Kriging模型和分层模型修正技术的结构边界条件识别

  • 王一航,彭珍瑞
作者信息 +

Identification of structural boundary conditions based on the Kriging model and the hierarchical model updating technique

  • WANG Yihang,PENG Zhenrui
Author information +
文章历史 +

摘要

为得到能够准确反映结构装配关系的有限元模型边界条件,结合Kriging模型和分层模型修正技术,提出了一种结构边界条件识别方法。为削弱材料参数误差对边界条件识别的影响和改善修正不适定性,利用实测自由模态频率,修正有限元模型的材料参数;以修正后的模型为基础进行边界条件识别,通过灵敏度分析确定模型的待修正边界参数,采用拉丁超立方抽样(Latin hypercube sampling, LHS)进行试验设计,并以实测约束模态频率与Kriging模型预测频率的差值最小为目标函数,利用粒子群算法求解最优参数。某包装机械摇臂连杆结构的试验结果表明:与传统的边界条件识别方法相比,所提方法具有较好的识别效果,识别得到的边界参数、结构响应等与实际结构具有较好的一致性。

Abstract

To obtain the boundary conditions of the finite element model which can accurately reflect the structural assembly relationship, combining the Kriging model and the hierarchical model updating technique, an identification method of the structural boundary conditions is proposed. Firstly, to weaken the influence of material parameter errors on the identification of boundary conditions and improve ill-posedness, the material parameters of finite element model are updated by using the measured free mode frequencies; then, boundary condition identification is performed on the basis of the updated model, and sensitivity analysis is used to determine the boundary parameters to be updated. Latin hypercube sampling is used for experimental design, and the minimum error between the measured constrained modal frequencies and the predicted frequencies of the Kriging model is taken as the objective function, and the particle swarm optimization algorithm is used to obtain the optimal parameters. Finally, the test results of a rocker arm link structure in a packaging machine show that the proposed method has better identification result compared with the traditional boundary parameters identification methods, and that the obtained boundary parameters and structural responses can have the better consistency with the actual structure.

关键词

边界条件 / 有限元模型修正 / Kriging模型 / 灵敏度分析 / 模态试验

Key words

boundary conditions / finite element model updating / Kriging model / sensitivity analysis / modal test

引用本文

导出引用
王一航,彭珍瑞. 基于Kriging模型和分层模型修正技术的结构边界条件识别[J]. 振动与冲击, 2023, 42(6): 134-142
WANG Yihang,PENG Zhenrui. Identification of structural boundary conditions based on the Kriging model and the hierarchical model updating technique[J]. Journal of Vibration and Shock, 2023, 42(6): 134-142

参考文献

[1] 单德山, 顾晓宇, 李中辉, 等. 桥梁结构有限元模型的仿射-区间不确定修正[J]. 中国公路学报, 2019, 32(2): 67-76.
Shan De-shan, Gu Xiao-yu, Li Zhong-hui, et al. Affine-interval uncertainty updating of finite element model for cable-stayed bridge[J]. China Journal of Highway and Transport, 2019 32(2):67-76.
[2] Masoud S, Jennifer A S M. Parameter estimation incorporating modal data and boundary conditions[J]. Journal of Structural Engineering, 1999, 9: 1048-1055.
[3] 赵雨皓, 杜敬涛, 许得水. 轴向载荷条件下弹性边界约束梁结构振动特性分析[J]. 振动与冲击, 2020, 39(15): 109-117.
Zhao Yu-hao, Du Jing-tao Xu De-shui. Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints [J]. Journal of Vibration and Shock, 2020 39(15): 109-117.
[4] Park Y S, Kim S, Kim N, et al. Finite element model updating considering boundary conditions using neural networks[J]. Engineering Structures, 2017, 150(10): 511-519.
[5] Meggitt J W R, Moorhouse A T. Finite element model updating using in-situ experimental data[J]. Journal of Sound and Vibration, 2020, 489: 115675.
[6] 邬晓敬, 肖华, 张伟伟, 等. 一种基于试验模态参数的结构边界条件优化设计方法[J]. 西北工业大学学报, 2014, 32(5): 707-712.
Wu Xiao-jing, Xiao Hua, Zhang Wei-wei, et al. Optimization method for uncertain boundary constraint of structure dynamical model based on test modal parameter[J]. Journal of Northwestern Polytechnical University, 2014, 32(5): 707-712.
[7] Shi Z, Hong Y, Yang S L. Updating boundary conditions for bridge structures using modal parameters[J]. Engineering Structures, 2019, 196: 109346.
[8] Hester D, Koo K, Xu Y, et al. Boundary condition focused finite element model updating for bridges[J]. Engineering Structures, 2019, 198: 109514.
[9] 袁爱民, 戴航, 孙大松. 考虑边界条件约束和参数灵敏度的斜拉桥有限元模型修正[J]. 应用基础与工程科学学报, 2010, 18(6): 900-909.
Yuan Ai-min, Dai Hang, Sun Da-song. Finite element model updating for a cabled-stayed bridge considering the boundary condition constraint and parameter sensitivity[J]. Journal of Basic Science and Engineering, 2010, 18(6): 900-909.
[10] 邹向农, 龙俊贤, 阳德高, 等. 考虑边界约束条件的悬索桥有限元模型修正研究[J]. 铁道科学与工程学报, 2019, 16(5): 1223-1230.
Zou Xiang-nong, Long Jun-xian, Yang De-gao, et al. Finite element model updating for a suspension bridge considering the boundary constraint conditions[J]. Journal of Railway Science and Engineering, 2019, 16(5): 1223-1230.
[11] 秦仙蓉, 郝婼兰, 徐俭, 等. 考虑边界条件不确定性的塔机有限元模型修正[J]. 振动.测试与诊断, 2018, 38(1): 92-96+208.
Qin Xian-rong, Hao Ruo-lan, Xu Jian, et al. Finite element model updating of a tower crane including boundary condition uncertainty[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 92-96+208.
[12] Goulet J A, Kripakaran P, Smith I. Multimodel Structural Performance Monitoring[J]. Journal of Structural Engineering, 2010, 136(10): 1309-1318.
[13] 刘才玮, 张毅刚, 吴金志. 考虑螺栓球节点半刚性的网格结构有限元模型修正研究[J]. 振动与冲击, 2014, 33(6): 35-39+43.
Liu Cai-wei, Zhang Yi-gang, Wu Jin-zhi. Finite element model updating of single-layer latticed cylindrical shell in consideration of the semi-rigid characters of bolt-ball joint[J]. Journal of Vibration and Shock, 2014, 33(6): 35-39+43.
[14] 张石磊, 陈少峰, 王焕定, 等. 基于正演分析的模型参数修正[J]. 哈尔滨工业大学学报, 2012, 44(10): 1-6.
Zhang Shi-lei, Chen Shao-feng, Wang Huan-ding, et al. Model parametric updating based on forward analysis[J]. Journal of Harbin Institute of Technology, 2012 44 (10): 1-6.
[15] 朱跃, 张令弥, 郭勤涛. 基于分层思想对复杂工程结构的有限元模型修正技术研究[J]. 振动与冲击, 2011, 30(12): 175-180+190.
Zhu Yue, Zhang Ling-mi, Guo Qin-tao. Finite element model updating technique based on hierarchical method of complex engineering structure[J]. Journal of Vibration and Shock, 2011, 30(12): 175-180+190.
[16] He C, Li Z, He H, et al. Stochastic dynamic model updating of aerospace thermal structure with a hierarchical framework[J]. Mechanical Systems and Signal Processing, 2021, 160: 107892.
[17] 李英超, 张敏, 李华军. 利用不完备实测模态修正杆系结构约束边界条件[J]. 工程力学, 2013, 30(1): 288-294.
Li Ying-chao, Zhang Min, Liu Hua-jun. Model updating for constraint boundary conditions of member structures using incomplete measured modes[J]. Engineering Mechanics, 2013, 30(1): 288-294.
[18] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
Han Zhong-hua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
[19] 沈彦佑, 贾民平, 朱林. 基于拉丁超立方抽样的离心式吸叶机噪声分析与降噪优化研究[J]. 振动与冲击, 2016, 35 (15): 93-97.
Shen Yan-you, Jia Min-ping, Zhu Lin. Noise analysis of a centrifugal leaf vacuum based on Latin hypercube sampling[J]. Journal of Vibration and Shock, 2016, 35 (15): 93-97.
[20] 刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722-1730.
Liu Ai-jun, Yang Yu, Li Fei. Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University (Engineering Science). 2013, 47(10): 1722-1730.

PDF(1937 KB)

Accesses

Citation

Detail

段落导航
相关文章

/