非光滑变尺度凸峰频率识别法的优化及应用

李海萍1,2,田瑞兰1,3,薛强1,3,张杨昆1,3,张小龙1,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 143-151.

PDF(2865 KB)
PDF(2865 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 143-151.
论文

非光滑变尺度凸峰频率识别法的优化及应用

  • 李海萍1,2,田瑞兰1,3,薛强1,3,张杨昆1,3,张小龙1,3
作者信息 +

Optimization and application of non-smooth variable scale-convex-peak frequency identification method

  • LI Haiping1,2,TIAN Ruilan1,3,XUE Qiang1,3,ZHANG Yangkun1,3,ZHANG Xiaolong1,3
Author information +
文章历史 +

摘要

基于非光滑变尺度SD(Smooth and Discontinuous)极限系统的非线性拓扑特性,优化了非光滑变尺度凸峰频率识别法,并将其应用到了轴承早期故障信号检测中。利用类同宿轨的周期性,推导了非光滑随机类次谐Melnikov函数,给出了均方意义下出现简单零点的充分必要条件,揭示了初始相位和噪声耦合因素对变尺度SD极限系统混沌阈值的影响。经数值模拟,发现微弱信号初始相位的存在会导致非光滑变尺度凸峰法识别频率时出现偏差或不可识别。当频率识别出现偏差时,利用数据的几何特性给出一个线性修正公式;当频率不可识别时,构造了检测方程组,使凸峰频率识别法依然有效。通过一个高速列车轮对轴承早期故障实例,运用优化非光滑变尺度凸峰频率识别法,确定了轮对轴承可能发生故障的位置。结果显示优化的非光滑变尺度凸峰频率识别法可更准确识别轮对轴承早期故障信号的频率,方法简单且精度较高。

Abstract

Based on the nonlinear topological characteristics of non-smooth variable scale Smooth and Discontinuous(SD) limit system, the non-smooth variable scale crest frequency identification method is optimized and applied to the early fault signal detection of bearing. Using the periodicity of homoclinic-like orbit, the non-smooth random subharmonic-like Melnikov function is derived, which leads to the necessary and sufficient conditions for the occurrence of simple zeros in the mean square sense. The effects of non-smooth and noise coupling factors on the chaotic threshold of non-smooth variable scale SD limit system are revealed. The numerical simulation results show that the initial phase of weak signal leads to the deviation or unrecognizability of non-smooth variable scale-convex-peak method. When there is a deviation in frequency identification, a linear correction formula is given by using the geometric characteristics of the data; When the frequency is unrecognizable, the detection equations are constructed to make the convex peak frequency identification method still effective. Through an example of early fault of wheel set bearing of high-speed train, the possible fault location of wheel set bearing is determined by using the optimized non-smooth variable scale convex peak frequency identification method. The results show that the non-smooth variable scale convex peak frequency identification method can accurately identify the frequency of early fault signal of wheel set bearing, and the method is simple and accurate.

关键词

SD极限系统 / 非光滑变尺度凸峰频率识别法 / 随机类次谐Melnikov方法 / 相位

Key words

SD limit systems / non-smooth variable scale-convex-peak frequency identification method / stochastic subharmonic-like Melnikov method / phase

引用本文

导出引用
李海萍1,2,田瑞兰1,3,薛强1,3,张杨昆1,3,张小龙1,3. 非光滑变尺度凸峰频率识别法的优化及应用[J]. 振动与冲击, 2023, 42(6): 143-151
LI Haiping1,2,TIAN Ruilan1,3,XUE Qiang1,3,ZHANG Yangkun1,3,ZHANG Xiaolong1,3. Optimization and application of non-smooth variable scale-convex-peak frequency identification method[J]. Journal of Vibration and Shock, 2023, 42(6): 143-151

参考文献

[1] 石娟娟, 花泽晖, 沈长青. 广义瞬时速度同步化分步解调变换及其对旋转机械振动信号分析[J]. 振动与冲击,2021, 40(24):1-11.
SHI Juanjuan, HUA Zehui, SHEN Changqing. A generalized instantaneous-frequency-estimation-free stepwise demodula-
tion transform and its application vibration signal analysis of rotating machinery[J]. Journal of Vibration and Shock, 2021, 40(24):1-11.
[2] 邓飞跃,丁浩,郝如江. 基于多尺度特征融合残差神经网络的旋转机械故障诊断[J]. 振动与冲击,2021, 40(24):22-28.
DENG Feiyue, DING Hao,HAO Rujiang.Fault diagnosis of rotating machinery base on residual neural network with mul-ti-scale feature fusion[J]. Journal of Vibration and Shock, 2021, 40(19):230-238.
[3] 唐贵基, 闫晓丽, 王晓龙. 基于Chen系统的滚动轴承早期微弱故障检测方法研究[J].振动与冲击,2020,39(27):128-141.
TANG Guiji, YAN Xiaoli, WANG Xiaolong. An incipient fault detection method of rolling bearing based on the chen system[J]. Journal of Vibration and Shock, 2020, 39(27): 128-141.
[4] HU Niaoqing, CHEN Min, QIN Guojun, et al. Extended sto-chastic resonance (SR) and its applications in weak mechanical signal processing [J]. Frontiers of Mechanical Engineering, 2009, 4(4): 450-461.
[5] Birx D L, Pipenberg S J. Chaotic oscillators and complex mapping feed forward networks (CMFFNS) for signal detec-tion in noisy environments[J]. IEEE International Joint Con-ference on Neural Networks, 1992, 2: 881-888.
[6] WANG Guanyu, CHEN Dajun, LIN Jianya, CHEN Xing. The application of chaotic oscillators to weak signal detection[J]. IEEE Transaction on Industrial Electronics, 1999, 46(2): 440-444.
[7] WANG Qiubao, ZHANG Xing, YANG Yuejuan. Dynamic behaviors analysis of asymmetric stochastic delay differential equations with noise and application to weak signal detection. Symmetry, 2019,11(11):1428.
[8] 范剑, 赵文理, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究[J]. 物理学报, 2013, 62(18):180502.
FAN Jian, ZHAO Wenli, WANG Wanqiang. Study on the weak sinusoidal signal detection property using Duffing chaos system[J]. Acta Physica Sinica, 2013, 62(18):180502.
[9] 杨晓丽, 徐伟, 孙中奎. 谐和激励与有界噪声作用下具有同宿和异宿轨道的Duffing振子的混沌运动[J]. 物理学报, 2006, 55(04): 13-22.
YANG Xiaoli, XU Wei, SUN Zhongkui. Influence of har-monic and bounded noise excitations on chaotic motion of Duffing oscillator with homoclinic and heteroclinic orbits[J]. Acta Physica Sinica, 2006, 55(04): 13-22.
[10] 周玲, 田建生, 刘铁军. Duffing混沌振子用于微弱信号检  测的研究[J]. 系统工程与电子技术, 2006, 28(10): 1477-1479.
ZHOU Ling, TIAN Jiansheng, LIU Tiejun. Study on the weak sinusoidal signal detection with Duffing chaotic oscillator[J]. Systems Engineering and Electronics, 2006, 28(10): 1477-1479.
[11] Jalilvand A, Fotoohabadi H. The Application of Duffing os-cillator in weak signal detection[J]. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 2011,9(1):1–6.
[12] Guerra F A, Batistela N J, et al. Multiobjective cuckoo search algorithm based on Duffing’s oscillator applied to Jiles-Atherton vector hysteresis parameters estimation[J]. IEEE Transactions on Magnetics, 2013, 49(5):1745–1748.
[13] Martynyuk V, Fedula M, Balov O. Periodic signal detection with using Duffing system Poincare map analysis[J]. Ad-vances in Science and Technology Research Journal. 2014, 8(22): 26–30.
[14] Akilli M, Yilmaz N, Akdeniz K G. Automated system for weak periodic signal detection based on Duffing oscillator[J]. IET Signal Processing, 2020, 14(10):710 – 716.
[15] Masoliver M, Masoller C. Neuronal coupling benefits the encoding of weak periodic signals in symbolic spike pat-terns[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 82: 105023.
[16] 丛超, 李秀坤, 宋扬. 一种基于新型间歇混沌振子的舰船线谱检测方法[J]. 物理学报, 2014, 63(6):168-179.
CONG Chao, LI Xiukun, SONG Yang. A method of detecting line spectrum of ship-radiated noise using a new intermittent chaotic oscillator[J]. Acta Physica Sinica, 2014, 63(6): 168-179.
[17] TIAN Ruilan, ZHAO Zhijie, XU Yong. Variable scale-convex-peak method for weak signal detection[J]. Sci-ence China(Technological Sciences) , 2020, 64(2): 331-340.
[18] WANG Guanyu, ZHENG Wei, HE Sailin. Estimation of am-plitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear os-cillator[J]. Signal Processing, 2002, 82(1): 103-115.
[19] O’Shea P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Pro-cessing, 2004, 52(2): 385-393.
[20] 翟笃庆, 刘崇新, 刘尧, 等. 利用阵发混沌现象测定未知信号参数[J]. 物理学报, 2010, 59(2): 816-825.
ZHAI Duqing, LIU Chongxin, LIU Yao, et al. Determination of the parameters of unknown signals based on intermittent chaos[J]. Acta Physica Sinica, 2010, 59(2): 816-825.
[21] 王慧武, 丛超. 一种基于Duffing系统的信号检测与参数估计新方法[J]. 电子学报, 2016, 44(6): 1450-1457.
WANG Huiwu, CONG Chao. A new signal detection and es-timation method by using Duffing system[J]. Acta Electronica Sinica, 2016, 44(6): 1450-1457.
[22] Coelho L S, Guerra F A, Batistela N J, et al. Multiobjective cuckoo search algorithm based on Duffing's oscillator applied to Jiles-Atherton vector hysteresis parameters estimation[J]. IEEE Transactions on Magnetics, 2013, 49(5): 1745-1748.
[23] 李爽, 徐伟, 李瑞江. 利用随机相位实现Duffing系统的混沌控制[J]. 物理学报, 2006, 55(3): 1049-1054.
LI Shuang, XU Wei, LI Ruijiang. Chaos control of Duffing systems by random phase[J]. Acta Physica Sinica, 2006, 55(3): 1049-1054.
[24] 芮国胜, 刘林芳, 张嵩, 等. 变相位周期策动力杜芬振子弱信号检测方法[J]. 电子测量与仪器学报, 2015, 29(11): 1662-1668.
RUI Guosheng, LIU Linfang, ZHANG Chong, et al. Study on detection method of weak signal based on vari-phase periodic driving force Duffing Oscillator[J]. Journal of Electronic Measurement and instrumentation, 2015, 29(11): 1662-1668.
[25] 牛德智, 陈长兴, 班斐, 等. Duffing振子微弱信号检测盲区消除及检测统计量构造[J]. 物理学报, 2015, 64(6): 060503.
NIU Dezhi, CHEN Changxing, BAN Fei, et al. Blind angle elimination method in weak signal detection with Duffing os-cillator and construction of detection statistics[J]. Acta Physica Sinica, 2015, 64(6): 060503.
[26] 赖志慧, 冷永刚, 孙建桥, 等. 基于Duffing 振子的变尺度微弱特征信号检测方法研究[J]. 物理学报, 2012, 61(5):050503.
LAI Zhihui, LENG Yonggang, SUN Jianqiao, et al. Weak characteristic signal detection based on scale transformation of Duffing oscillator[J]. Acta Physica Sinica, 2012, 61(5):050503.
[27] CAO Qingjie, Wiercigroch M , Pavlovskaia E E, Thompson J M T, Grebogi C. Archetypal oscillator for smooth and discon-tinuous dynamics[J]. Physical Review E, 2006, 74(4): 046218.
[28] CAO Qingjie, Wiercigroch M, Pavlovskaia E E, Thompson J M T, Grebogi C. SD oscillator, the attractor and their applica-tions[J]. Journal of Vibration Engineering, 2007, 20(5): 454-458.
[29] CAO Qingjie, Wiercigroch M, Pavlovskaia E E, Thompson J M T, Grebogi C. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics[J]. Philo-sophical Transactions of Royal Society A, 2008, 366(1865): 635-652.
[30] CAO Qingjie, Wiercigroch M, Pavlovskaia E E, Thompson J M T. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics[J]. International Journal of Non-linear Mechanics, 2008, 43: 462-473.
[31] SHEN Jun, LI Yurong, DU Zhengdong. Subharmonic and grazing bifurcations for a simple bilinear oscillator[J]. Inter-national Journal of Non-linear Mechanics, 2014, 60: 70-82.
[32] YI Tingting, DU Zhengdong. Degenerate Grazing Bifurcations in a Simple Bilinear Oscillator[J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 14501

PDF(2865 KB)

Accesses

Citation

Detail

段落导航
相关文章

/