基于遗传算法与随机减量技术的气动阻尼识别方法研究

唐龙飞1,2,郑朝荣1,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 16-23.

PDF(1940 KB)
PDF(1940 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 16-23.
论文

基于遗传算法与随机减量技术的气动阻尼识别方法研究

  • 唐龙飞1,2,郑朝荣1,3
作者信息 +

Identification method of aerodynamic damping based on the genetic algorithm and random decrement technique

  • TANG Longfei1,2,ZHENG Chaorong1,3
Author information +
文章历史 +

摘要

随机减量技术(random decrement technique,RDT)因其计算快、成本低的优点,在工程结构模态参数识别中应用广泛。针对RDT在信号截断幅值与样本时长的选取比较主观带来的误差问题,采用遗传算法(genetic algorithm, GA)对其进行改进,提出改进的随机减量技术GA-RDT,并将其应用于某超高层建筑气弹模型的气动阻尼识别。首先,对RDT方法得到的自由衰减曲线进行拟合并定义误差,分析截断幅值A和样本时长T对误差(优化目标)的影响,采用遗传算法寻找A和T的最优解;其次,基于气弹模型风洞试验所得的顶点加速度时程,结合GA-RDT方法和Hilbert-Huang变换(Hilbert-Huang transform,HHT)方法进行气动阻尼识别;最后,以自然激励技术(natural excitation technique, NExT)识别所得的气动阻尼比为基准,对比分析GA-RDT方法相对于传统RDT方法的精度优势。结果表明,与NExT方法所得的气动阻尼比相比,GA-RDT方法识别得到的不同风速时X向、Y向与扭转向的气动阻尼比的平均误差均小于0.14%,其识别精度显著高于传统RDT方法,从而验证了基于GA-RDT的气动阻尼识别方法的可行性。

Abstract

The random decrement technique (RDT) has been widely utilized in the modal parameter identification of engineering structures, due to its advantage of rapid computation and low cost. Aiming at the shortcomings of subjective selection of truncation amplitude and sample duration in the RDT, which brings large error in the modal parameter identification, the genetic algorithm is adopted to revise the RDT and the improved RDT (GA-RDT) method is proposed, and then the GA-RDT method is applied in the aerodynamic damping ratio identification of an aeroelastic model of a supertall building. Firstly, the free decay curve obtained by the RDT is fitted and then the error is defined. The effect of the cut-off amplitude and sample duration on the optimization target is analyzed and the genetic algorithm is utilized to search the optimal solution of these two parameters. Secondly, based on the tip acceleration time history acquired by the aeroelastic model wind tunnel test, the aerodynamic damping ratio is identified by combining the GA-RDT and Hilbert-Huang transformation method. Finally, the aerodynamic damping ratio identified by the natural excitation technique (NExT) is regarded as the benchmark, and the identification accuracy based on the GA-RDT method and traditional RDT method are discussed. The results show that, when compared with the aerodynamic damping ratio identified by the NExT method, the corresponding results identified by the GA-RDT method under different wind speeds have an average error of less than 0.14% in the X, Y and torsional directions respectively, and the identification accuracy is much better than those identified by the traditional RDT method. Therefore, the feasibility of the aerodynamic damping identification method based on the GA-RDT method is verified.

关键词

超高层建筑 / 气动阻尼识别 / 遗传算法 / 改进的随机减量技术 / 自然激励技术

Key words

supertall building / aerodynamic damping identification / genetic algorithm / improved random decrement technique / natural excitation technique

引用本文

导出引用
唐龙飞1,2,郑朝荣1,3. 基于遗传算法与随机减量技术的气动阻尼识别方法研究[J]. 振动与冲击, 2023, 42(6): 16-23
TANG Longfei1,2,ZHENG Chaorong1,3. Identification method of aerodynamic damping based on the genetic algorithm and random decrement technique[J]. Journal of Vibration and Shock, 2023, 42(6): 16-23

参考文献

[1] 徐士代, 汪凤泉. 基于ARMA模型识别工程结构模态参数[J]. 工业建筑, 2007, 37(5): 20-22.
XU Shidai, WANG Fengquan. Mode parameter identification of engineering structure based on arma model[J]. Industrial Construction, 2007, 37(5): 20-22.
[2] III G J, CARNE T G, LAUFER J. The natural excitation technique (NExT) for modal parameter extraction from operating structures[J]. the International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4): 260-277.
[3] JUANG J N, PAPPA R S. An eigensystem realization algorithm (ERA) for modal parameter identification and model reduction[J]. Journal of Guidance, Control and Dynamics, 1985, 8(5): 620-627.
[4] OVERSCHEE P V, MOOR B D. Subspace identification for linear systems: Theory-implementation-applications[M]. Boston: Kluwer Academic Publishers, 1996.
[5] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析: 理论, 实验与应用[M]. 天津: 天津大学出版社, 2001.
CAO Shuqian, ZHANG Wende, XIAO Longxiang. Modal Analysis of Vibrating Structure: Theory, Experiment and Application[M]. Tianjin: Tianjin University Press, 2001.
[6] COLE H A. On-line failure detection and damping measurements of aerospace structures by random decrement signature[R]. NASA CR-2205, Nielsen Engineering and Research Inc., Mountain View, Calif, 1973.
[7] 彭程, 张立民, 李原辉, 等. 利用改进的EMD和随机减量法识别模态参数[J]. 噪声与振动控制, 2011, 31(6): 53-56.
PENG Cheng, ZHANG Limin, Li Yuanhui, et al. Identification of modal parameters using improved EMD and Random Decrement Method[J]. Noise and Vibration Control, 2011, 31(6): 53-56.
[8] 邹良浩, 梁枢果, 顾明. 高层建筑气动阻尼评估的随机减量技术[J]. 华中科技大学学报(城市科学版), 2003, 20(1): 30-33.
ZOU Lianghao, LIANG Shuguo, GU Ming. Evaluation of Aerodynamic Damping in Wind-induced Vibration of Tall Buildings by Random Decrement Technology[J]. Journal of Civil Engineering and Management, 2003, 20(1): 30-33.
[9] HUANG C S. Structural identification from ambient vibration measurement using the multivariate AR model[J]. Journal of Sound and Vibration, 2001, 241(3): 337-359.
[10] 韩建平, 李林, 王洪涛, 等. 基于Hilbert-Huang变换和随机减量技术的模态参数识别[J]. 世界地震工程, 2011, 27(1): 72-77.
HAN Jianping, LI lin, WANG Hongtao, et al. Modal parameter identification based on Hilbert-Huang transformand random decrement technique[J]. World Earthquake Engineering, 2011, 27(1): 72-77.
[11] AREEMIT N, MONTGOMERY M, CHRISTOPOULOS C, et al. Identification of the dynamic properties of a reinforced concrete coupled shear wall residential high-rise building[J]. Canadian Journal of Civil Engineering, 2012, 39(6): 631-642.
[12] 崔旭利, 陈怀海, 贺旭东, 等. MIMO随机振动试验频响估计中激励和响应的同步方法[J]. 振动与冲击, 2012, 31(3): 92-96.
CUI Xuli, CHEN Huaihai, HE Xudong, et al. Synchronization between excitation and response signals in frequency response function estimation for MIMO random vibration test[J]. Journal of Vibration and Shock, 2012, 31(3): 92-96.
[13] 吴玖荣, 潘旭光, 傅继阳,等. 利通广场台风特性与风致振动分析[J]. 振动与冲击, 2014, 33(1):17-23.
WU Jiurong, PAN Xuguang, FU Jiyang, et al. Wind field characteristic and wind-induced vibration analysis of litong plaza under typhoon effect[J]. Journal of Vibration and Shock, 2014, 33(1):17-23.
[14] 黄景辉, 李寿英, 刘敏,等. Noor Ⅲ光热电站吸热塔气动阻尼研究[J]. 振动与冲击, 2018, 37(21): 177-183.
HUANG Jinghui, LI Shouying, LIU Min, et al. Aerodynamic damping of heat absorption tower of Noor III solar thermal power station[J]. Journal of Vibration and Shock, 2018, 37(21): 177-183.
[15] 胡佳星, 李正农, 王澈泉,等. 台风激励下海口市某高层建筑模态参数识别[J]. 建筑结构学报, 2020, 41(2): 71-82.
HU Jiaxing, LI Zhengnong, WANG Chequan, et al. Modal parameter identification of a high-rise building in Haikou city during typhoons[J]. Journal of Building Structures, 2020, 41(2): 71-82.
[16] 张西宁, 屈梁生. 一种改进的随机减量信号提取方法[J]. 西安交通大学学报, 2000, 34(1): 106-107+110.
ZHANG xining, QU Liangsheng. Improved Method for Extracting of Random Decrement Signal[J]. Journal of Xi'an Jiaotong University, 2000, 34(1): 106-107+110.
[17] WU W H, CHEN C C, LIAU J A. A multiple random decrement method for modal parameter identification of stay cables based on ambient vibration signals[J]. Advances in Structural Engineering, 2012, 15(6): 969-982.
[18] 刘子豪, 吴玖荣. 结构模态参数识别的改进多重随机减量法研究[J]. 广州大学学报(自然科学版), 2017, 16(4): 52-59.
LIU Zihao, WU Jiurong. Modified multiple random decrement technique for structural modal parameter identification[J]. Journal of Guangzhou University(Natural Science Edition) , 2017, 16(4): 52-59.
[19] 陈太聪, 沈文杰. 模态辨识中随机减量技术的实用改进[J]. 振动. 测试与诊断, 2019, 39(6): 1153-1159+1355.
CHEN Taicong, SHEN Wenjie. Practical Improvement of the Random Decrement Technique in Modal Identification[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(6): 1153-1159+1355.
[20] IBRAHIM S R. Random Decrement Technique for Modal Identification of Structures[J]. Journal of Spacecraft and Rockets, 1977, 14(11): 696-700.
[21] 史文海, 李正农, 陈联盟. 随机减量技术的研究现状及进展[J]. 防灾减灾工程学报, 2008, 28(S): 52-57.
SHI Wenhai, LI Zhengnong, CHEN Lianmeng. Research status and progress of Random Decrement Technique.[J] Journal of Disaster Prevention and Mitigation Engineering, 2008, 28(S): 52-57.
[22] 唐龙飞. 偏转风作用下千米级超高层建筑气弹试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
TANG Longfei. Experimental study on aeroelastic model of thousand-meter-scale megatall buildings under twisted wind flow[D]. Harbin: Harbin Institute of Technology, 2021.
[23] HUANG N E, SHEN S S P. Hilbert-Huang transform and its applications[M]. New Jersey: World Scientific, 2005.
[24] WU Z, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[25] 玄光男. 遗传算法与工程优化[M]. 北京: 清华大学出版社, 2004.
XUAN Guangnan. Genetic Algorithm and Engineering Optimization[M]. Beijing: Tsinghua University Press, 2004.
[26] 唐龙飞, 刘昭, 郑朝荣, 等. 偏转风作用下方形超高层建筑风致响应与气弹效应特性研究[J/OL]. 建筑结构学报:1-13[2022-02-23].
TANG Longfei, LIU Zhao, ZHENG Chaorong, et al. Investigation on characteristics of wind-induced responses and aeroelastic effect of a square-section supertall building under twisted wind flow[J/OL]. Journal of Building Structures:1-13[2022-02-23].
[27] 张永利. HHT结合NExT法识别结构参数[J]. 工程抗震与加固改造, 2009, 31(5): 8-13.
ZHANG Yongli. Identification of Structural Parameters Based on HHT and NExt[J]. Earthquake Resistant Engineering and Retrofitting, 2009, 31(5): 8-13.
[28] 曹会兰, 全涌, 顾明, 等. 独立矩形截面超高层建筑的顺风向气动阻尼风洞试验研究[J]. 振动与冲击, 2012, 31(5): 122-127.
CAO Huilan, QUAN Yong, GU Ming, et al. Along-wind aerodynamic damping of isolated rectangular high-rise buildings[J]. Journal of Vibration and Shock, 2014, 31(5): 122-127.
[29] 曹会兰, 全涌, 顾明. 方形截面超高层建筑的横风向气动阻尼风洞试验研究[J]. 土木工程学报, 2013, 46(4): 18-25.
CAO Huilan, QUAN Yong, GU Ming. Experimental study on across-wind aerodynamic damping of square super-high-rise building[J]. China Civil Engineering Journal, 2013, 46(4): 18-25.
[30] 李寿英, 肖春云, 范永钢, 等. 方形截面超高层建筑全风向气动阻尼的试验研究[J]. 湖南大学学报(自然科学版), 2015, 42(7): 9-15.
LI Shouying, XIAO Chunyun, FAN Yonggang, et al. Experimental investigation of aerodynamic damping on super-high-rise buildings with square cross section under the action of full-direction wind[J]. Journal of Hunan University (Natural Sciences), 2015, 42(7): 9-15.
[31] 王磊, 梁枢果, 张振华, 等. 超高层建筑横风向气动阻尼比简化估算方法研究[J]. 工程力学, 2017, 34(1): 145-153.
WANG Lei, LIANG Shuguo, ZHANG Zhenhua, et al. Across wind aerodynamic damping of super tall buildings[J]. Engineering Mechanics, 2017, 34(1): 145-153.
[32] STECKLEY A. Motion-induced wind forces on chimneys and tall buildings[D]. Western Ontario: The University of Western Ontario, 1989.

PDF(1940 KB)

Accesses

Citation

Detail

段落导航
相关文章

/