干冰粉气动破岩振动时频能量分析

王小飞1,胡少斌2,王恩元1,张强3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 172-179.

PDF(2031 KB)
PDF(2031 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 172-179.
论文

干冰粉气动破岩振动时频能量分析

  • 王小飞1,胡少斌2,王恩元1,张强3
作者信息 +

Time-frequency energy analysis on the vibration induced by dry ice powder pneumatic rock breaking

  • WANG Xiaofei1,HU Shaobin2,WANG Enyuan1,ZHANG Qiang3
Author information +
文章历史 +

摘要

为研究干冰粉气动破岩的冲击振动危害效应,试验测试了干冰管内气体压力变化和地表的振动速度,用希尔伯特-黄变换方法研究了干冰粉气动破岩振动衰减规律。研究结果表明:1、干冰粉气动破岩最大振动速度在11m时下降至2.5cm/s以下,是一种振动很小的新型破岩方式;2、经测量致裂管内压力峰值达到50.85MPa,计算能量的TNT当量符合萨道夫斯基公式;3、使用HHT对干冰粉气动破岩振动信号进行时频分析,能量在频域上主要分布于0-100Hz,振动持续时间0.3s。

Abstract

In order to study the impact and vibration hazard effects of dry ice powder pneumatic rock breaking, the experiment tested the gas pressure change in the dry ice tube and the vibration speed of the ground surface, and the attenuation law of dry ice powder pneumatic rock breaking vibration was studied by the Hilbert-Huang transformation method. The research results show that: 1. The maximum vibration velocity of dry ice powder pneumatic rock breaking drops below 2.5cm/s at 11m, which is a new rock breaking method with little vibration;2. The peak pressure in the fracturing tube is measured to reach 50.85MPa, and the TNT equivalent of the calculated energy conforms to the Sadowski formula; 3. The time-frequency analysis of the dry ice powder pneumatic rock breaking vibration signal is carried out by using HHT, and the energy is mainly distributed in the frequency domain. 0-100Hz, vibration duration 0.3s.

关键词

干冰粉气动破岩 / 振动测量 / 希尔伯特-黄变换 / 能量计算 / 时频分析

Key words

Dry ice powder pneumatic rock breaking / Vibration measurement / Hilbert-Huang transform / Energy calculation / Time-frequency analysis

引用本文

导出引用
王小飞1,胡少斌2,王恩元1,张强3. 干冰粉气动破岩振动时频能量分析[J]. 振动与冲击, 2023, 42(6): 172-179
WANG Xiaofei1,HU Shaobin2,WANG Enyuan1,ZHANG Qiang3. Time-frequency energy analysis on the vibration induced by dry ice powder pneumatic rock breaking[J]. Journal of Vibration and Shock, 2023, 42(6): 172-179

参考文献

[1]DOBRATZ B M,CRAWFORD P C.LLNL explosives handbook: properties of chemical explosives and explosive stimu- lants [M].[S. l.]: Lawrence Livermore National Laboratory,1985.
[2]Singh, C. P., Agrawal, H., & Mishra, A. K. (2020). . Arabian Journal of  Geosciences, 13(13).
[3]Zhang Y , Deng J , Deng H , et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting[J]. International Journal of Damage Mechanics, 2018.
[4] 牛德草. CO2 相变爆破增裂技术在煤巷顺层预抽钻孔中的应用[J]. 煤矿现代化,2021, 5(30):68-71.
Niu Decao. The application of CO2 phase change blasting and cracking technology in coal roadway pre-drainage drilling [J]. Modernization of Coal Mines, 2021, 5(30): 68-71.
[5] 张 旭. CO2 预裂爆破技术在塔山煤矿 8222 工作面实践应用[J]. 煤矿现代化,2021, 5(30):169-171.
Zhang Xu. Practical application of CO2 pre-split blasting technology in 8222 working face of Tashan Coal Mine [J]. Coal Mine Modernization, 2021, 5(30):169-171.
[6] 周盛涛,罗学东. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报,2021, 43(7):883-893.
Zhou Shengtao, Luo Xuedong. Research progress and prospects of carbon dioxide phase change fracturing technology[J]. Chinese Journal of Engineering Science, 2021, 43(7):883-893.
[7] 王 燕,孙伟博. 二氧化碳相变致裂软岩实验研究[J]. 爆破器材,2020, 49(2):46-51.
Wang Yan, Sun Weibo. Experimental study on carbon dioxide phase change fracturing soft rock[J]. Blasting Materials, 2020, 49(2):46-51.
[8] Hu, S. B., S. G. Pang, and Z. Y. Yan. 2019. A new dynamic fracturing method: deflagration fracturing technology with carbon dioxide, International Journal of Fracture, 220: 99-111.
[9] 颜正勇,胡少斌. 干冰粉气动压裂混凝土质量比实验研究[J]. 工程爆破,2019,25(5) :14-18.
Yan Zhengyong, Hu Shaobin. Experimental study on the mass ratio of dry ice powder pneumatic fracturing concrete [J]. Engineering Blasting, 2019, 25(5): 14-18.
[10] 陶 明,赵华涛. 液态CO2相变致裂破岩与炸药破岩综合对比分析[J]. 爆破,2018, 35(2):41-49.
Tao Ming, Zhao Huatao. Comprehensive comparative analysis of liquid CO2 phase change fracturing and explosive rock breaking[J]. Blasting, 2018, 35(2):41-49.
[11] 张柏林,李豪君. 基于COMSOL数值模拟的液态CO2相变致裂布孔参数优化[J]. 煤矿安全,2018, 49(9):207-210.
Zhang Bolin, Li Haojun. Optimization of liquid CO2 phase change cracking parameters based on COMSOL numerical simulation[J]. Coal Mine Safety, 2018, 49(9):207-210.
[12] 李豪君,张家行. 液态CO2相变致裂参数及应用效果研究[J]. 煤炭技术,2021, 40(10):149-152.
Li Haojun, Zhang Jiaxing. Study on phase change fracturing parameters and application effects of liquid CO2[J]. Coal Technology, 2021, 40(10):149-152.
[13] J. Morlet, Wave propagation and sampling theory, Geophysics 47 (2) (1982)203–236.
[14] T.R. Babu, S. Srikanth, A.S. Sekhar, Hilbert–Huang transform for detection and monitoring of crack in a transient rotor, Mechanical Systems and Signal Processing,22 (4)(2008) 905–914.
[15] 钟佑明,秦树人. 希尔伯特-黄变换的统一理论依据研究[J]. 振动与冲击,2006, 25(3):40-43.
Zhong Youming, Qin Shuren. Research on the Unified Theoretical Basis of Hilbert-Huang Transformation[J]. Vibration and Shock, 2006, 25(3):40-43.
[16] 宋肖龙,高文学. 爆破振动对隧道围岩累积损伤效应的影响[J]. 振动与冲击,2020, 39(24):54-62.
Song Xiaolong, Gao Wenxue. The influence of blasting vibration on the cumulative damage effect of tunnel surrounding rock[J]. Vibration and Shock, 2020, 39(24): 54-62.
[17] 吴建源,龙 源. 基于希尔伯特黄变换的高压输气管道爆裂振动信号时频特性分析[J]. 振动与冲击,2018, 37(8):113-119.
Wu Jianyuan, Long Yuan. Analysis of time-frequency characteristics of burst vibration signal of high-pressure gas pipeline based on Hilbert Huang transform[J]. Journal of Vibration and Shock, 2018, 37(8):113-119.
[18] 刘翠伟,李玉星. 基于希尔伯特黄变换的输气管道泄漏音波时频特性分析[J]. 振动与冲击,2014, 33(16):42-49.
Liu Cuiwei, Li Yuxing. Time-frequency characteristics analysis of gas pipeline leakage sound wave based on Hilbert Huang transform[J]. Vibration and Shock, 2014, 33(16): 42-49.
[19] Kutter HK and Fairhurst C (1971) On the fracture process in blasting. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts 8(3): 181IN1, 189–188, IN10, 202.
[20] 周科平,柯 波. 液态 CO2 爆破系统压力动态响应及爆炸能量分析[J]. 爆破,2017, 34(3):7-13.
Zhou Keping, Ke Bo. Pressure dynamic response and explosion energy analysis of liquid CO2 blasting system[J]. Blasting, 2017, 34(3):7-13.
[21] 白鑫,张东明. 液态CO2相变射流压力变化及其煤岩致裂规律[J]. 中国矿业大学学报,2020, 49(4):661-670.
Bai Xin, Zhang Dongming. Pressure change of liquid CO2 phase-change jet and its coal-rock fracturing law[J]. Journal of China University of Mining & Technology, 2020, 49(4):661-670.
 [22] 宋肖龙,高文学. 液态 CO2 相变致裂的 TNT 当量研究[J]. 振动与冲击,2020, 39(24):54-62.
Song Xiaolong, Gao Wenxue. Study on TNT equivalent of liquid CO2 phase change cracking[J]. Vibration and Shock, 2020, 39(24): 54-62.
[23] B. Wang, et al. Supercritical CO2 source for underground seismic exploration.Journal of King Saud University-Science 32 (2020) 1731–1737
[24]云美厚,李晓斌,冯磊.地震波速度影响因素剖析.石油地球物理勘探,2021,56(6):1448-1458
Yun Meihou, Li Xiaobin, Feng Lei. Analysis of factors affecting seismic wave velocity. Petroleum Geophysical Exploration, 2021, 56(6): 1448-1458
[25]张宪国,林承焰,张涛,等.井、震多尺度信息预测老油田浅层岩性气藏[J].石油地球物理勘探,2009,44(5):609-612
Zhang Xianguo, Lin Chengyan, Zhang Tao, etc. Prediction of shallow lithologic gas reservoirs in old oilfields with multi-scale information of wells and earthquakes[J]. Petroleum Geophysical Exploration, 2009, 44(5):609-612

PDF(2031 KB)

321

Accesses

0

Citation

Detail

段落导航
相关文章

/