新型负刚度超材料吸能结构的设计与优化

潘怡1,王萌1,2,周阳1,李雪梅1,孙蓓蓓1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 180-187.

PDF(2137 KB)
PDF(2137 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 180-187.
论文

新型负刚度超材料吸能结构的设计与优化

  • 潘怡1,王萌1,2,周阳1,李雪梅1,孙蓓蓓1
作者信息 +

Design and optimization of a new energy absorbing structure with negative stiffness metamaterial

  • PAN Yi1,WANG Meng1,2,ZHOU Yang1,LI Xuemei1,SUN Beibei1
Author information +
文章历史 +

摘要

为了提高负刚度超材料的吸能特性,提出了一种加固圆柱形负刚度超材料结构;它由圆柱面斜梁单元和内部周期性平面斜梁单元组成,其吸能性能主要通过斜梁单元的负刚度特性实现。通过理论解析和有限元分析对结构的力学性能进行研究,结果表明斜梁单元高厚比值越大结构的负刚度和双稳态性能越明显且两种斜梁单元的高厚比取值越接近结构稳定性越好;同时通过与空心圆柱形负刚度超材料结构的对比,证实了加固结构提高了空间利用率以及增强了吸能效果。最后以航天器非火工分离装置为应用背景,基于Kriging代理模型对所提出的新型负刚度超材料吸能结构进行了优化设计,总吸能水平和单位吸能水平均相对增长了20.47%。

Abstract

To improve the energy absorption characteristics of negative stiffness metamaterials, a reinforced cylindrical negative stiffness metamaterial structure was proposed, which was composed of cylindrical inclined beam elements and internal periodic plane inclined beam elements. Its energy absorption performance was mainly realized by the negative stiffness of the inclined beam element. The mechanical properties of the structure were studied by theoretical analysis and finite element analysis. The results show that the greater the ratio of height to thickness of the inclined beam elements is, the more obvious the negative stiffness and bi-stable performance of the structure are, and the closer the ratio of height to thickness of the two inclined beam elements is, the better the stability of the structure is. At the same time, compared with hollow cylindrical metamaterial structure with negative stiffness, it is confirmed that the reinforced structure improves space utilization rate and energy absorption effect. Finally, taking the non-explosive separation device of spacecraft as the application background, the novel negative stiffness metamaterial energy absorbing structure was optimized based on Kriging agent model. The total energy absorption level and unit energy absorption level are increased by 20.47%

关键词

加固圆柱形结构 / 负刚度超材料 / 斜梁单元 / 吸能 / 优化

Key words

reinforced cylindrical structure / negative stiffness metamaterial / inclined beam unit / energy absorption / optimization

引用本文

导出引用
潘怡1,王萌1,2,周阳1,李雪梅1,孙蓓蓓1. 新型负刚度超材料吸能结构的设计与优化[J]. 振动与冲击, 2023, 42(6): 180-187
PAN Yi1,WANG Meng1,2,ZHOU Yang1,LI Xuemei1,SUN Beibei1. Design and optimization of a new energy absorbing structure with negative stiffness metamaterial[J]. Journal of Vibration and Shock, 2023, 42(6): 180-187

参考文献

[1]周云,松本達治,田中和宏,等.新型高阻尼黏弹性阻尼器性能试验研究[J].工程力学,2016,33(07):92-99+115.
Zhou Yun, Matsumoto Tatsuji, Tanaka Kazuhiro, et al. Research on experimental properties of novel high damping viscoelastic dampers[J]. Engineering Mechanics,2016,33(07):92-99+115.
[2] Chen X , Ji Q , Wei J , et al. Light-weight shell-lattice metamaterials for mechanical shock absorption[J]. International Journal of Mechanical Sciences, 2019, 169:105288.
[3] Xue R , Cui X , Zhang P , et al. Mechanical design and energy absorption performances of novel dual scale hybrid plate-lattice mechanical metamaterials[J]. Extreme Mechanics Letters, 2020, 40:100918.
[4] Wang Y , Wang L , Ma Z D , et al. A negative Poisson's ratio suspension jounce bumper[J]. Materials & design, 2016, 103:90-99. [5]夏利福,杨德庆.含负泊松比超材料肋板的双层圆柱壳声振性能分析[J].振动与冲击,2018,37(18):138-144.
Xia Lifu, Yang Deqing. Acoustics and vibration analysis of a double cylindrical shell with lightweight auxetic metamaterial ribs[J]. Journal of vibration and shock,2018,37(18):138-144.
[6] Imbalzano G, Linforth S, Ngo TD, et al. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs[J]. Composite Structures,2018,183:242-61.
[7] Gao Q, Zhao X, Wang C, et al. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading [J]. Materials & Design, 2018, 143:120-130.
[8] Findeisen C, Hohe J, Kadic M, et al. Characteristics of mechanical metamaterials based on buckling elements[J]. Journal of the Mechanics and Physics of Solids, 2017, 102:151-64.
[9] Qiu J, Lang JH, Slocum AH. A Curved-Beam Bistable Mechanism[J]. Journal of Microelectromechanical Systems, 2004,13(2):137-46.
[10] Mehreganian N, Fallah AS, Sareh P. Structural Mechanics of Negative Stiffness Honeycomb Metamaterials[J]. Journal of Applied Mechanics, 2021, 88(5): 1-18.
[11] Goldsberry BM, Haberman MR. Negative stiffness honeycombs as tunable elastic metamaterials [J]. Journal of Applied Physics, 2018, 123(9):091711.
[12] 侯秀慧,吕游,周世奇,等.新型负刚度吸能结构力学特性分析[J].力学学报,2021,53(07):1940-1950.
Hou Xiuhui, Lü You, Zhou Shiqi, et al. Mechanical properties analysis of a new energy absorbing structure with negative stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(07):1940-1950.
[13] Ren C, Yang D, Qin H. Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study [J]. Materials, 2018, 11(7):1078.
[14] Ren C, Li Q, Yang D. Quasi-static and sound insulation performance of a multifunctional cylindrical cellular shell with bidirectional negative-stiffness metamaterial cores [J]. International Journal of Mechanical Sciences, 2020, 180: 105662.
[15] Correa DM, Klatt T, Cortes S, et al. Negative stiffness honeycombs for recoverable shock isolation [J]. Rapid Prototyping Journal, 2015, 21(2):193-200.
[16] Debeau DA, Seepersad CC, Haberman MR. Impact behavior of negative stiffness honeycomb materials [J]. Journal of Materials Research, 2018, 33(3):290-299.
[17] Shan S, Kang SH, Raney JR, et al. Multistable Architected Materials for Trapping Elastic Strain Energy[J]. Advanced Materials, 2015, 27(29):4296-301.
[18] Hua J, Lei H, Zhang Z, et al. Multistable Cylindrical Mechanical Metastructures: Theoretical and Experimental Studies [J]. Journal of Applied Mechanics, 2019,86(7).
[19] Yang H, Ma L. 1D and 2D snapping mechanical metamaterials with cylindrical topology[J]. International Journal of Solids and Structures, 2020, 204-205:220-232.
[20] Tan X, Wang B, Chen S, et al. A novel cylindrical negative stiffness structure for shock isolation [J]. Composite Structures, 2019, 214(APR.):397-405.
[21]杨铭波,杜三虎,王智磊,等.SMA低冲击分离螺母设计与试验验证[J].航天器工程,2020,29(05):65-70.
Yang Mingbo, Du Sanhu, Wang Zhilei, et al. Design and test verification of SMA seperation nut[J]. Spacecraft Engineering, 2020,29(05):65-70.
[22] 殷有泉,励争.弹性结构的分岔点失稳和极值点失稳[J].力学与实践,2015,37(03):376-378.
Yin Youquan, Li Zheng. The instabilities of bifurcation point and extreme point of an elastic structure[J]. Mechanics in Engineering, 2015, 37(3): 376-378.
[23]Younis MI, Hussein H. Analytical Study of the Snap-Through and Bistability of Beams With Arbitrarily Initial Shape [J]. Journal of Mechanisms and Robotics, 2020, 12:1-12.

PDF(2137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/