非线性电磁吸振器的吸振效果与动力学特性研究

简彬1,马洪业2,王珂2,严博3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 188-195.

PDF(2179 KB)
PDF(2179 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 188-195.
论文

非线性电磁吸振器的吸振效果与动力学特性研究

  • 简彬1,马洪业2,王珂2,严博3
作者信息 +

Vibration absorption performance and dynamic characteristics of nonlinear electromagnetic absorbers

  • JIAN Bin1,MA Hongye2,WANG Ke2,YAN Bo3
Author information +
文章历史 +

摘要

提出两种非线性电磁吸振器:准零刚度主结构耦合非线性RLC(relay logic circuit)电路;准零刚度主结构耦合线性RLC电路。推导得到非线性机电耦合系数。建立起两种吸振器的振动控制模型。基于谐波平衡法,推导并分别得到两种吸振器位移传递率的解析表达式。利用雅可比矩阵判断解析解的稳定性。结果表明:相比于主结构无外接电路的条件下,两种吸振器可分别提高64%和77%的吸振性能;前者在低频吸振方面更具优势;前者在电阻较小时会引发特定频率内的准周期振动;二者均存在最优设计参数。

Abstract

This paper proposes two kinds of nonlinear electromagnetic vibration absorbers: the quasi-zero stiffness main structure coupled nonlinear RLC circuit and the quasi-zero stiffness main structure coupled linear RLC circuit. First, the nonlinear electromagnetic coefficient is derived. Then, the governing equations of two kinds of nonlinear electromagnetic absorbers are established and corresponding displacement transmissibilities are derived by the harmonic balance method. Last, Jacobin Matrix is used to judge the stability of solutions. Results show that two kinds of nonlinear absorbers can improve the vibration absorption performance by 64% and 77% compared with that under the condition of the main structure without external circuit. The former has more advantages in low-frequency vibration absorption. Moreover, it will cause quasi-periodic vibration at a specific frequency when the resistance is low. Both of them have optimal design parameters.

关键词

非线性吸振器 / 振动控制 / 谐波平衡法 / 非线性振动

Key words

Nonlinear vibration absorber / Vibration control / Harmonic balance method / Nonlinear oscillation

引用本文

导出引用
简彬1,马洪业2,王珂2,严博3. 非线性电磁吸振器的吸振效果与动力学特性研究[J]. 振动与冲击, 2023, 42(6): 188-195
JIAN Bin1,MA Hongye2,WANG Ke2,YAN Bo3. Vibration absorption performance and dynamic characteristics of nonlinear electromagnetic absorbers[J]. Journal of Vibration and Shock, 2023, 42(6): 188-195

参考文献

[1] 白世鹏,侯之超. 动力吸振器对车辆垂向振动能量及悬架性能的影响[J]. 振动与冲击, 2020, 39(22): 169-174.
BAI Shipeng, HOU Zhichao. Impact of dynamic vibration absorbers on vehicle vertical vibration energy and suspension performances[J]. Journal of Vibration and Shock, 2020, 39(22): 169-174.
[2] 郭一鸣,曾广劲,陈守义,等. 转向盘动力吸振器稳健性设计研究与应用[J]. 振动与冲击, 2021, 40(4): 205-211.
GUO Yiming, ZENG Guangjin, CHEN Shouyi,et al. Research and application of robust design of a steering wheel dynamic vibration absorber[J]. Journal of Vibration and Shock, 2021, 40(4): 205-211.
[3] 林武斌,滕汉东. 动力吸振在输油泵机组垂向减振中的应用研究[J]. 振动与冲击, 2020, 39(12): 289-293.
LIN Wubin, TENG Handong. Application of dynamic vibration absorbers in the vertical vibration reduction of oil pump unit[J]. Journal of Vibration and Shock, 2020, 39(12): 289-293.
[4] 王誉蓉,吴天行. 高弹扣件轨道车轮间振动波的反射对钢轨短波长波磨的影响[J]. 振动与冲击, 2020, 39(6): 29-36.
WANG Yurong,WU Tianxing1. Effects of vibration wave reflections between wheels and tracks with high-elastic fasteners on short pitch rail corrugation[J]. Journal of Vibration and Shock, 2020, 39(6): 29-36.
[5] 秦美娟,金肖玲,陈志强,等. 具惯容离心摆的轴系结构轴向振动减振分析[J]. 振动与冲击, 2018, 37(22): 36-42.
QIN Meijuan, JIN Xiaoling, CHEN Michael, et al. Axial vibration reduction of a shaft structure using a centrifugal pendulum absorber with inerters. Journal of Vibration and Shock, 2018, 37(22): 36-42.
[6] 王民,刘宇男,昝涛,等. 宽频带多重动力吸振器薄壁件铣削振动控制[J]. 振动与冲击, 2018, 37(10): 241-246.
WANG Min, LIU Yunan, ZAN tao, et al. Vibration control in the milling of thin walled parts based on multiple dynamic  vibration absorbers with wide band. Journal of Vibration and Shock, 2018, 37(10): 241-246.
[7] FRAHM Hermann. Device for Damping Vibrations of Bodies, US No. Patent 989958, 1909.
[8] ORMONDROY J., DEN Hartog J.P. The theory of the dynamic vibration absorber[J], Transactions of ASME: Applied Mechanics, 1928, 50: 9–22.
[9] DEB Hartog J. P., Mechanical vibrations[M], McGraw-Hill, New York, 1934.
[10] HAHNKAMM Erich, Die Dämpfung von Fundamentschwingungen bei veränderlicher Erregerfrequenz[J]. Archive of Applied Mechanics, 1932, 4: 192–201, (in German).
[11] BROCK J. E. A note on the damped vibration absorber[J], Journal of Applied Mechanics, 1946, 13: A284.
[12] ASAMI Toshihiko, NISHIHARA Osamu. Closed-form exact solution to H∞ optimization of dynamic vibration absorbers (application to different transfer functions and damping systems)[J]. Journal of Vibration & Acoustics, 2003, 125: 398–405.
[13] FORWARD Robert L. Electronic damping of vibrations in optical structures[J]. Applied Optics, 1979, 18(5): 690-697.
[14] HAGOOD N. W., FLOTOW A. Von. Damping of structural vibrations with piezoelectric materials and passive electrical networks[J]. Journal of Sound Vibration, 1991, 146(2):243-268.
[15  NIEDERBERGE Dominik, FLEMING Andrew, REZA Moheimani S. O., et al. Adaptive multi-mode resonant piezoelectric shunt damping[J]. Smart Materials & Structures, 2004, 13(5):1025-1035.
[16] FLEMING Andrew, REZA Moheimani S. O. Adaptive piezoelectric shunt damping[J]. Smart Materials & Structures, 2003, 12(1): 36-48.
[17] JI Hongli , QIU Jinhao , CHENG Jun , et al. Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression[J]. Journal of Vibration & Acoustics, 2011, 133: 041015.
[18] BEHRENS S., FLEMING Andrew, REZA Moheimani S. O. Electromagnetic shunt damping[C]. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronic (AIM 2003), 2003, 2:1145-1150.
[19] INOUE Tsuyoshi, ISHIDA Yukio, SUMI Masaki. Vibration Suppression Using Electromagnetic Resonant Shunt Damper[J]. Journal of Vibration & Acoustics, 2008, 130(4): 041003.
[20] YAN Bo, ZHANG Xinong, NIU Hongpan . Design and test of a novel isolator with negative resistance electromagnetic shunt damping[J]. Smart Materials & Structures, 2012, 21(3):035003.
[21] JUNG Jae-Hong, CHENG Tai-Hong, OH Il-Kwon. Electromagnetic synchronized switch damping for vibration control of flexible beams[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1031-1038.
[22] YAN Bo , WANG Ke , KANG Chang-Xi, et al. Self-sensing electromagnetic transducer for vibration control of space antenna reflector[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5):1944-1951.
[23] YAMADA Keisuke, MATSUHISA Hiroshi, UTSUNO Hideo, et al. Optimum tuning of series and parallel LR circuits for passive vibration suppression using piezoelectric elements[J]. Journal of Sound and Vibration, 2010, 329(24): 5036–5057.
[24] TANG Xiudong, LIU Yilun, CUI Wen, et al. Analytical solutions to H2 and H∞ optimizations of resonant Shunted electromagnetic tuned mass damper and vibration energy harvester[J]. Journal of Vibration & Acoustics, 2016, 138(1): 011018.
[25] SOLTANI P, KERSCHEN G, TONDREAU G, et al. Piezoelectric vibration damping using resonant shunt circuits: an exact solution[J]. Smart Materials & Structures, 2014, 23(12), 125014.
[26] IKEGAME Toru, TAKAGI Kentaro, INOUE Tsuyoshi. Exact solutions to H∞ and H2 optimizations of passive resonant shunt circuit for electromagnetic or piezoelectric shunt damper[J]. Journal of Vibration & Acoustics, 2019, 141(3):031015.
[27] YAN Bo, MA Hongye, ZHENG Wenguang, et al. Nonlinear electromagnetic shunt damping for nonlinear vibration isolators[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(4):1851-1860.
[28] MA Hongye, YAN Bo. Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation[J]. Mechanical Systems and Signal Processing, 2021, 146:107010.
[29] LOSSOUARN B., DEü J.-F., KERSCHEN G. A fully passive nonlinear piezoelectric vibration absorber[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2018, 376(2127):20170142.
[30] CARRELLA A., BRENNA M. J., KOVACIC I., et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound & Vibration, 2009, 322(4-5):707-717.
[31] YAN Bo, MA Hongye, ZHAO Chenxue, et al. A vari-stiffness nonlinear isolator with magnetic effects: theoretical modeling and experimental verification[J]. International Journal of Mechanical Sciences, 2018,148: 745-755.
[32] JING Xingjian, ZHANG Linli, FENG Xiao, et al. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers[J]. Mechanical Systems and Signal Processing, 2019, 118:317-339.
[33] WANG Yu, JING Xingjian, GUO Yingqing. Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints[J]. Nonlinear Dynamics, 2019, 95: 445-464.
[34] YAN Bo, LUO Yajun, ZHANG Xinong. Structural multimode vibration absorbing with electromagnetic shunt damping[J]. Journal of Vibration & Control, 2016, 22(6): 1604-1617.
[35] CHEN Jie , HU Wen-Hua, LI Qiu-Sheng. Nonlinear dynamics of a foldable multibeam structure with one to two internal resonances[J]. International Journal of Mechanical Sciences, 2018, 150: 369-378.
[36] ZHU Songye, Shen Wenai, Qian Xin. Dynamic analogy between an electromagnetic shunt damper and a tuned mass damper[J]. Smart Materials and Structures, 2013, 22: 115018.

PDF(2179 KB)

368

Accesses

0

Citation

Detail

段落导航
相关文章

/