基于声发射Lamb波频散特性的轴承损伤单传感器定位

缪祥垚,伍星,柳小勤,汤林江

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 196-201.

PDF(1905 KB)
PDF(1905 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 196-201.
论文

基于声发射Lamb波频散特性的轴承损伤单传感器定位

  • 缪祥垚,伍星,柳小勤,汤林江
作者信息 +

Single-sensor location of a bearing defect based on the Lamb wave dispersion characteristics of acoustic emission

  • MIAO Xiangyao,WU Xing,LIU Xiaoqin,TANG Linjiang
Author information +
文章历史 +

摘要

对大型轴承表面损伤进行定位,有助于及时发现故障,加快修复速度。提出了一种使用单个声发射传感器对大型轴承表面损伤进行定位的方法。针对轴承环形结构,利用Lamb波频散特性,估计不同频段信号的可能模式和传播速度,使用Akaike信息准则(AIC)确定不同频段信号到达传感器的时间差。根据不同频带到达传感器的时间差估计不同模式下声发射源位置。针对传播模式不确定和仅利用一个时间差的镜像位置问题,改变传感器位置后对同一声发射源进行第二次定位,剔除不合理的传播模式,从而得到声发射源的唯一确定位置。通过在圆柱滚子推力轴承上进行的断铅实验,验证了该方法的有效性。

Abstract

It is essential to find the location of the fault in large bearings to improve the efficiency of the maintenance. A method for fault localization using single acoustic emission sensor is proposed. The dispersion characteristics of Lamb wave are applied to estimate the propagation velocities of possible modes for the bearing annular structures. The arrival time differences of possible modes with the corresponding frequency bands are calculated by using the Akaike Information Criterion (AIC). The distance between the sensor and the acoustic emission source can be estimated according to the velocity difference and the time difference. For the uncertainty of the propagation modes and the twin locations, a secondary localization procedure is carried out by changing the sensor position. The unique location of the acoustic emission source is obtained after filtering out the unreasonable propagation modes. The effectiveness of the proposed method is verified by the pencil lead breaking experiments on the cylindrical roller thrust bearing.

关键词

声发射 / 兰姆波 / 故障定位 / AIC / 到达时间差

Key words

Acoustic emission / Lamb wave / fault localization / AIC / time difference of arriva

引用本文

导出引用
缪祥垚,伍星,柳小勤,汤林江. 基于声发射Lamb波频散特性的轴承损伤单传感器定位[J]. 振动与冲击, 2023, 42(6): 196-201
MIAO Xiangyao,WU Xing,LIU Xiaoqin,TANG Linjiang. Single-sensor location of a bearing defect based on the Lamb wave dispersion characteristics of acoustic emission[J]. Journal of Vibration and Shock, 2023, 42(6): 196-201

参考文献

[1] E. Bechhoefer, R. Schlanbusch, T. I. Waag. Techniques for Large, Slow Bearing Fault Detection [J]. International Journal of Prognostics and Health Management, 2016,7(1):1-12.
[2] ALI J B, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals [J]. Applied Acoustics, 2015,89:16-27.
[3] LI A A, VS A, MB A, et al. Source localization on large-scale canisters for used nuclear fuel storage using optimal number of acoustic emission sensors [J]. Nuclear Engineering and Design,2021,375:111097.
[4] LU Z, TZ B, EC B, et al. Phased acoustic emission sensor array for localizing radial and axial positions of defects in hollow structures [J]. Measurement,2020,151:107223.
[5] 张颖,苏宪章,刘占生. 滚动轴承故障非接触多传感器声信号融合方法[J].振动与冲击,2012,31(16):188-192.
Zhang Ying, Su Xianzhang, Liu Zhansheng. Non-contact multi-sensor acoustic signal fusion method for rolling bearing fault [J]. Journal of Vibration and shock, 2012, 31(16):188-192.
[6] Yoshioka T, Fujiwara T. A new acoustic emission source locating system for the study of rolling contact fatigue [J].Wear, 1982,81(1):186-186.
[7] 柳小勤,汤林江,侯凯泽,等. 基于声发射的滚动轴承损伤定位方法研究[J]. 振动与冲击,2020,39(15):176-182.
Liu Xiaoqin, Tang Linjiang, Hou Kaize,et al. Fault localization for rolling bearing based on AE [J]. Journal of Vibration and shock,2020, 39(15):176-182.
[8] 范志涵,张宇,芮小博. 航天器舱壁结构碎片撞击声发射定位技术研究[J]. 仪器仪表学报,2020,41(1):178-184.
Fan Zhihan, Zhang Yu, Rui Xiaobo. Research on impact acoustic emission location technology of spacecraft bulkhead structure debris [J]. Chinese Journal of Scientific Instrument, 2020,41(1):178-184.
[9]  QUY T B, KIM J M. Crack detection and localization in a fluid pipeline based on acoustic emission signals [J]. Mechanical Systems and Signal Processing,2021,150:107254
[10]  SURGEON M, WEVERS M. One sensor linear location of acoustic emission events using plate wave theories [J]. Materials Science & Engineering A, 1999, 265(1-2): 254-261.
[11]  EBRAHIMKHANLOU A, SALAMONE S. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections [J]. Ultrasonics,2017,78:134-145
[12]  郑祥明,赵玉珍,史耀武. 兰姆波频散曲线的计算[J]. 无损检测,2003, 25(2):66-68.
Zheng Xiangming, Zhao Yuzhen, Shi Yaowu. Calculation of lamb wave dispersion curve [J]. Nondestructive Testing, 2003, 25(2):66-68.
[13]  李家伟,陈积懋. 无损检测手册[M]. 无损检测手册,2002.
Li Jiawei, Chen Jimao. Non-destructive testing manual [M]. Beijing: Machinery Industry Press, 2002.
[14]  樊保圣,闫小青,扶名福,等. 基于Lamb波频散特性的薄板声发射源定位方法研究[J]. 固体力学学报,2011,32(S1): 283-287.
Fan Baosheng, Yan Xiaoqing, Fu Mingfu, et al. The research on locating method of acoustic emission source based on the dispersive characteristics of Lamb wave in sheet [J]. Chinese Journal of Solid Mechanics,2012, 32(Sup1): 283-287.
[15]  Naumann J. Acoustic emission monitoring of wind turbine bearings[D]. Sheffield:University of Sheffield, 2016.
[16]  Tang L, Liu X, Wu X, et al. Defect localization on rolling element bearing stationary outer race with acoustic emission technology [J]. Applied Acoustics,2021,182:108207.
[17]  赵江海,杨慧,顾菊平,等. 基于短时能量的声发射源定位方法研究[J]. 振动与冲击, 2013, 32(23): 110-114.
Zhao Jianghai, Yang Hui, Gu Juping, et al. Research on acoustic emission source localization method based on short-term energy [J]. Journal of Vibration and shock, 2013, 32(23):110-114.
[18]  MIRGAL P, PAL J, BANERJEE S. Online acoustic emission source localization in concrete structuresusing iterative and evolutionary algorithms [J]. Ultrasonics, 2020, 108:106211.
[19]  KURZ J H, GROSSE C U, REINHARDT H W. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete [J]. Ultrasonics, 2005, 43(7): 538-546.
[20]  MADARSHAHIAN R, ZIEHL P, CAICEDO J M. Acoustic emission Bayesian source location: Onset time challenge [J]. Mechanical Systems and Signal Processing,2019,123:483-495.

PDF(1905 KB)

Accesses

Citation

Detail

段落导航
相关文章

/