冲击作用下含水煤样能量吸收和耗散规律及本构关系研究

翟新献1,翟俨伟2,刘勤裕1,赵晓凡1,任柱安1,郭钊洋1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 202-211.

PDF(2800 KB)
PDF(2800 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (6) : 202-211.
论文

冲击作用下含水煤样能量吸收和耗散规律及本构关系研究

  • 翟新献1,翟俨伟2,刘勤裕1,赵晓凡1,任柱安1,郭钊洋1
作者信息 +

Energy absorption and dissipation and the constitutive relation of water-bearing coal specimens under impact load

  • ZHAI Xinxian1,ZHAI Yanwei2,LIU Qinyu1,ZHAO Xiaofan1,REN Zhu’an1,GUO Zhaoyang1
Author information +
文章历史 +

摘要

煤层注水是综放开采回采巷道预防冲击地压的主要措施之一。为了研究含水煤样动态力学性质和力学参数,利用霍普金森压杆(SHPB)试验系统,对不同含水率的圆柱形煤样进行单轴冲击压缩试验,研究含水率和冲击速度对煤样动态应力-应变曲线、动态力学参数以及耗散能变化规律的影响。研究结果表明:(1)煤样动态力学参数与冲击速度和含水率有关。当煤样含水率一定时煤样动态抗压强度、动态弹性模量与冲击速度成正相关;而冲击速度一定时煤样动态抗压强度、动态弹性模量与含水率成负相关。(2)在冲击过程中煤样的损伤耗散能直接反映煤样中微裂隙发育程度,随着冲击时间的增加,煤样损伤耗散能增大,煤样坍塌破坏时损伤耗散能达到最大值。当含水率一定时煤样破坏耗散能与冲击速度成正相关;而冲击速度一定时煤样破坏耗散能与含水率成负相关。(3)损伤因子定义为煤样损伤耗散能与破坏耗散能的比率。基于煤样单轴冲击压缩试验结果,建立了煤样损伤体-黏弹性本构模型和本构关系,对不同含水率煤样动态应力-应变试验曲线进行理论拟合,理论拟合曲线与试验曲线拟合度高,因此理论曲线可用来表示单轴冲击压缩煤样的应力-应变关系。研究结论为冲击地压矿井深孔煤层注水预防冲击地压提供了理论基础。

Abstract

Coal seam water injection is one of the main measures to prevent coal bump in the gateways of fully mechanized caving face. In order to study dynamic mechanical properties and mechanical parameters of water-bearing coal specimens, the uniaxial impact compression tests of cylindrical coal specimens with different moisture contents were carried out by using the Hopkinson pressure bar (SHPB) test system. The effects of moisture contents and impact velocities on the dynamic stress-strain curves, dynamic mechanical parameters, and dissipation energies of coal specimens were studied. (1) Dynamic mechanical parameters of coal specimens are related with their impact velocities and moisture contents. When the moisture contents of coal specimens are a constant, the dynamic compressive strength and dynamic elastic modulus of coal specimens are positively correlated with the impact velocities. When the impact velocities are a constant, the dynamic compressive strength and dynamic elastic modulus of coal specimens are negatively correlated with their moisture contents. (2) The damage dissipation energies of coal specimens during impact directly reflects their degree of micro-fracture development. With the increase of impact time, the damage dissipation energies of coal specimens increase, and the damage dissipation energies reach the maximum when the coal specimens collapses. When the moisture contents are a constant, the failure dissipation energies of coal specimens are positively correlated with the impact velocities; When the impact velocities are a constant, failure dissipation energies of the coal specimens are negatively correlated with their moisture contents. (3) The ratio of damage dissipation energy to failure dissipation energy of coal specimen is defined as its damage factor. Based on the uniaxial impact compression tests results of coal specimens, their damage-viscoelastic constitutive model and constitutive relation were established. The dynamic stress-strain experimental curves of coal specimens with different moisture contents were theoretically fitted. The fitting degree between the theoretical and the experimental curves was higher, so the theoretical curves can be used to represent the stress-strain relationship of uniaxial impact compression coal specimens. The conclusions provide a theoretical basis for the prevention of rockburst by coal seam water injection into deep-holes in coal bump mines.

关键词

煤样 / 含水率 / 动载荷 / 霍普金森压杆(SHPB) / 动态力学性质 / 耗散能 / 本构关系

Key words

Coal specimen / moisture content / dynamic load / SHPB / dynamic mechanical property / dissipation energy / constitutive relation

引用本文

导出引用
翟新献1,翟俨伟2,刘勤裕1,赵晓凡1,任柱安1,郭钊洋1. 冲击作用下含水煤样能量吸收和耗散规律及本构关系研究[J]. 振动与冲击, 2023, 42(6): 202-211
ZHAI Xinxian1,ZHAI Yanwei2,LIU Qinyu1,ZHAO Xiaofan1,REN Zhu’an1,GUO Zhaoyang1. Energy absorption and dissipation and the constitutive relation of water-bearing coal specimens under impact load[J]. Journal of Vibration and Shock, 2023, 42(6): 202-211

参考文献

[1] 解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报, 2019, 44(2): 463−472.
XIE Beijing, YAN Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model [J]. Journal of China Coal Society, 2019, 44(2) : 463−472.
[2] 王文, 李化敏, 顾合龙. 三维动静组合加载含水煤样强度特征试验研究[J]. 岩石力学与工程学报, 2017, 36(10): 2406-2414.
WANG Wen, LI Huamin, GU Helong. Experimental study of strength characteristics of water-saturated coal specimens under 3D coupled static-dynamic loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2406-2414.
[3] 宫凤强, 李夕兵, 刘希灵, 等. 一维动静组合加载下砂岩动力学特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(10): 2076−2085.
GONG Fengqiang, LI Xibing, LIU Xiling, et al. Experimental study of dynamic Characteristics of sandstone under one-dimensional coupled static and dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2076-2085.
[4] 谢和平, 高峰, 鞠杨.深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178.
XIE Heping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178.
[5] 刘学生. 动载荷作用下巷道围岩冲击地压机理及防控研究[D]. 青岛: 山东科技大学, 2017.
[6] 李明, 茅献彪, 曹丽丽, 等. 高应变率下煤力学特性试验研究[J]. 采矿与安全工程学报, 2015, 32(2): 317-324.
LI Ming, MAO Xianbiao, CAO Lili, et al. Experimental study on mechanical properties of coal under high strain rate [J]. Journal of Mining & Safety Engineering, 2015, 32(2): 317-324.
[7] 潘俊锋, 刘少虹, 杨磊, 等. 动静载作用下煤的动力学特性试验研究[J]. 中国矿业大学学报, 2018, 47(1): 206-212.
PAN Junfeng, LIU Shaohong, YANG Lei, et al. Experimental study of dynamic characteristics of coal under static and dynamic loads [J]. Journal of China University of Mining &. Technology,2018,47(1):206-212.
[8] 丁育青, 汤文辉, 徐鑫, 等. 含水率对非饱和黏土动态压缩特性的影响[J]. 爆炸与冲击, 2013, 33(6): 625−630.
DING Yuqing, TANG Wenhui, XU Xin, et al. Experimental study of moisture effects on dynamic compression properties of unsaturated clay [J]. Explosion and Shock Waves, 2013, 33(6): 625-630.
[9] 郑广辉, 许金余, 王鹏, 等. 不同饱水度红砂岩静态本构关系及动态力学性能研究[J]. 振动与冲击, 2018, 37(16):31-37.
ZHENG Guanghui, XU Jinyu, WANG Peng, et al. Static constitutive relation and dynamic mechanical properties of red sandstone with different water saturation [J]. Journal of Vibration and Shock, 2018, 37(16):31-37.
[10] 解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击, 2017, 36(21): 117-124.
XIE Beijing, WANG Xinyan, LV Pingyang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage [J]. Journal of Vibration and Shock, 2017, 36(21): 117-124.
[11]  焦振华, 穆朝民, 王磊, 等. 被动围压下煤冲击压缩动态力学特性试验研究[J]. 振动与冲击, 2021, 40(21): 185-193.
JIAO Zhenhua, MU Chaomin, WANG Lei, et al. Tests for dynamic mechanical properties of coal impact compression under passive confining pressure [J]. Journal of Vibration and Shock, 2021, 40(21): 185-193.
[12] Mishra, S., Khetwal, A., Chakraborty, T. Dynamic Characterisation of Gneiss [J]. Rock Mechanics and Rock Engineering, 2019, 52(1): 61-81.
[13] 王文, 李化敏, 袁瑞甫, 等. 动静组合加载含水煤样的力学特征及细观力学分析[J]. 煤炭学报, 2016, 41(3): 611-617.
WANG Wen, LI Huamin, YUAN Ruifu, et al. Micromechanics analysis and mechanical characteristics of water-saturated coal samples under coupled static-dynamic loads [J]. Journal of China Coal Society, 2016, 41(3): 611-617.
[14] WANG W, ZHANG S W, LI H M, et al. Analysis of the dynamic impact mechanical characteristics of prestressed saturated fractured coal and rock[J]. Advances in Civil Engineering, 2019, 5125923: 1−10.
[15] 王文, 张世威, LIU Kai, 等. 真三轴动静组合加载饱水煤样动态强度特征研究[J]. 岩石力学与工程学报, 2019, 38(10): 2010-2020.
WANG Wen, ZHANG Shiwei, LIU Kai, et al. Experimental study on dynamic strength characteristics of water-saturated coal under true triaxial static-dynamic combination loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2010-2020.
[16] 陈宁. 动静载作用下地下水库煤柱坝体损伤特征研究[D]. 徐州: 中国矿业大学, 2020.
[17] 张美长. 含水煤样静动断裂力学特性及机理实验研究[D]. 阜新: 辽宁工程技术大学, 2020.
[18] 赵毅鑫, 龚爽, 黄亚琼. 冲击载荷下煤样动态拉伸劈裂能量耗散特征实验[J]. 煤炭学报, 2015, 40(10): 2320-2326.
ZHAO Yixin, GONG Shuang, HUANG Yaqiong. Experimental study on energy dissipation characteristics of coal samples under impact loading [J]. Journal of China Coal Society, 2015, 40(10): 2320-2326.
[19] 黄明, 詹金武, 胡柳青, 等. 三峡库区泥质粉砂岩的SHPB试验及能量耗散特征研究[J]. 工程地质学报, 2015, 23(6): 1175-1181.
HUANG Ming, ZHAN Jinwu, HU Liuqing, et al. Split Hopkinson pressure bar test and energy dissipation characteristics of argillaceous siltstone in Three Gorges reservoir region [J]. Journal of Engineering Geology, 2015, 23(6): 1175-1181.
[20] Gong Fengqiang, Jia Hangyu, Zhang Zongxian, et, al. Energy Dissipation and Particle Size Distribution of Granite under Different Incident Energies in SHPB Compression Tests [J]. Shock and Vibration, 2020, 54(6): 3017-3038.
[21] 穆朝民, 宫能平. 煤体在冲击荷载作用下的损伤机制[J]. 煤炭学报, 2017, 42(8): 2011-2018.
MU Chaomin, GONG Nengping. Damage mechanism of coal under impact loads [J]. Journal of China Coal Society, 2017, 42(8): 2011–2018.
[22] 付玉凯, 解北京, 王启飞. 煤的动态力学本构模型[J]. 煤炭学报, 2013, 38(10): 1769-1774.
FU Yukai, XIE Beijing, WANG Qifei. Dynamic mechanical constitutive model of the coal [J]. Journal of China Coal Society, 2013, 38(10): 1769-1774.
[23] Junjun Feng, En’yuan Wang, Qisong Huang, et al. Experimental and numerical study of failure behavior and mechanism of coal under dynamic compressive loads [J]. International Journal of Mining Science and Technology, 2020, 30(5): 613-621.
[24] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾[J]. 爆炸与冲击, 2014, 34(6): 641-657.
HU Shisheng, WANG Lili, SONG Li, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641-657.
[25] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183+214.
JI Jiejie, LI Hongtao, WU Faming, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176-183+214.
[26] 洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 长沙: 中南大学, 2008.
[27] 单仁亮, 程瑞强, 高文蛟. 云驾岭煤矿无烟煤的动态本构模型研究[J]. 岩石力学与工程学报, 2006, 25(11): 2258-2263.
SHAN Renliang, CHENG Ruiqiang, GAO Wenjiao. Experimental study on dynamic constitutive characteristics of anthracite of Yun Jialing Coal Mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2258-2263.
[28] 胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22(3): 242-246.
HU Shisheng, WANG Daorong. Dynamic constitutive relation of concrete under impact [J]. Explosion and Shock Waves, 2002, 22(3): 242-246.
[29] 王礼立. 冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响[J]. 宁波大学学报(理工版), 1995, 8(3): 30-57.
WANG Lili. The influence of dynamic constitutive relation of polymer on viscoelastic wave propagation under impact load [J]. Journal of Ningbo University(Natural Science & Engineering Edition), 1995, 8(3): 30-57.

PDF(2800 KB)

266

Accesses

0

Citation

Detail

段落导航
相关文章

/